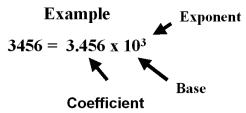
Summary of Exponent Operations

Any number can be written in the form

Numerical (coefficient) x base exponent with base exponent termed the exponential


Example: 3456 can be written as 3.456×10^3

3456 = the numerical or coefficient

 10^3 = the exponential

10 = the base

3 = the exponent

On exams, pay particular attention to terms "exponential" and "exponent"

Examples

For Number: 5.91 x 10⁵ For Number: 210 x 10⁻⁸

Coefficient: 5.91 Coefficient: 210 Exponential: 10⁻⁸

Base: 10 Base: 10 Exponent: 5 Exponent: -8

The Math for + Exponents

Exponent = a multiplying factor

$$4^2 = 4 \times 4 = 16$$

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$5^3 = 5 \times 5 \times 5 = 125$$

$$10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$$

 $10^6 = 1,000,000$

The Math for – Exponents

Exponent = a dividing factor

$$4^{-2} = 1/4 \times 1/4 = 1/16$$

$$2^{-4} = 1/2 \times 1/2 \times 1/2 \times 1/2 = 1/16$$

$$5^{-3} = 1/5 \times 1/5 \times 1/5 = 1/125$$

$$10^{-6} = 1/10 \times 1/10 \times 1/10 \times 1/10 \times 1/10 \times 1/10$$

$$10^{-6} = 0.000001$$

The Math for 0 Exponents

Any base0 = 1

$$4^0 = 1$$

$$2^0 = 1$$

$$5^0 = 1$$

$$10^0 = 1$$

Expressing Numbers

Any number has a variety of exponentials:

Number	=	Coefficient x	exponential	
n	=	C x	10expone	ent
33,700.	=	337,000.	X	10-1
33,700.	=	33,700.	X	10^{0}
33,700.	=	3,370. x	10^{1}	

Exponential Notation (+) exponents

The coefficient is multiplied by 10exponent

$$33,700.$$
 = 33.7 x 10^3 $33,700.$ = 3.37 x 10^4

The decimal Point is moved to the right

Exponential Notation (-) exponents

The coefficient is divided by 10exponent

33,700.	=	337,000 x		10 ⁻¹
33,700.	= 3	,370,000	X	10^{-2}

The decimal Point is moved to the left $337,000 \Rightarrow 33,700$ decimal moved left 1 $3,370,000 \Rightarrow 33,700$ decimal moved left 2

Exponential Notation (0) exponents

The Coefficient is multiplied by 1

$$33,700. \qquad = \qquad 33,700 \times 10^{0}$$

Since $10^0 = 1$

The decimal Point is not moved.

Standard exponential notation "Scientific Notation"

coefficient

greater than or equal to one and less than ten

$$3 = yes$$

$$0.01 = no$$

$$134. = no$$

Which is in scientific notation?

$$33,700 = 337,000 \times 10^{-1}$$

$$33,700 = 33,700 \times 10^{\circ}$$

$$33,700 = 3,370 \times 10^{1}$$

$$33,700 = 337 \times 10^2$$

$$33,700 = 33.7 \times 10^3$$

$$33,700 = 3.37 \times 10^4$$

$$33,700 = 0.337 \times 10^5$$

Express 15,208 in scientific notation

1. Determine the Coefficient

write down digits starting with the first nonzero digit 15208

2. Place decimal point between the 1st & 2nd digit

1.5208

3. Determine correct exponent (both number & sign)

$$1.5208 \times 10^{\pm?} = 15.208$$

Count number of places the decimal needs to be moved

coefficient → number

Move to right 4 places ... so, exponent is 4

Expressing in scientific notation

$$1.528 \times 10^{-4} = 0.0001528$$

$$1.528 \times 10^4 = 15280$$

$$1.528 \times 10^{\circ} = 1.528$$

From the Coefficient

Move to left = less (-)

Move to right = more (+)

No Move = 0

Arithmetic Operations with Exponents

Multiplying

Multiplication of exponents → exponents added

$$10^2 \times 10^6 = 10^8$$

$$10^{2} \times 10^{-6} = 10^{-4}$$

 $10^{-2} \times 10^{-6} = 10^{-8}$

$$10^{-2} \times 10^{-6} = 10^{-8}$$

Numerical and exponents treated separately:

$$3 \times 10^{4} \times 4 \times 10^{6} = 12 \times 10^{10}$$

 $5 \times 10^{24} \times 36 \times 10^{-8} = 180 \times 10^{16}$
 $3 \times 10^{-12} \times 4 \times 10^{-16} = 12 \times 10^{-28}$
 $\Rightarrow 1.2 \times 10^{9}$
 $\Rightarrow 1.8 \times 10^{14}$
 $\Rightarrow 1.2 \times 10^{-27}$

$$3 \times 10^{-12} \times 4 \times 10^{-16} = 12 \times 10^{-28}$$
 \rightarrow 1,2 x 10⁻²

Dividing

Division of exponents → exponents subtracted

$$10^2 / 10^6 = 10^{-4} 10^2 / 10^{-6} = 10^8$$

$$10^{-2} / 10^{-6} = 10^{4}$$

Numerical and exponents treated separately:

$$3.0 \times 10^{4}$$
 / 4.0×10^{6} = 0.75×10^{-2} \rightarrow 7.5×10^{-3}
 5.0×10^{24} / 36×10^{-8} = 0.139×10^{26} \rightarrow 1.4×10^{25}
 3.0×10^{-12} / 4.0×10^{-16} = 0.75×10^{4} \rightarrow 7.5×10^{3}

Manual Addition or Subtraction

The exponents must be the same:

add/subtract numerical portion and keep the same exponent

8.25 x
$$10^2$$
 + 2.80 x 10^2 = 11.05 x 10^2 \rightarrow 1.105 x 10^3 8.25 x 10^2 - 2.80 x 10^2 = 5.45 x 10^2

If exponents are different, convert them to the same exponent; then add/subtract

$$8.25 \times 10^4 + 2.80 \times 10^2 \implies 825 \times 10^2 + 2.80 \times 10^2 = 827.8 \times 10^2 \implies 8.28 \times 10^4$$

