Chemistry 101-Unit 2 Answers to Practice Problems

For each of the following, identify the coefficient, exponential, base and exponent:

NUMBER	coefficient	exponential	base	exponent
5.91 x 10 ⁵	5.91	10 ⁵	10	5
210 x 10 ⁻⁸	210	10-8	10	-8
0.061 x 10 ⁻³	0.061	10^{-3}	10	-3
4.88 x 10 ⁻⁶	4.88	10 ⁻⁶	10	-6
3.83 x 10 ⁹	3.83	10 ⁹	10	9
6.023×10^{23}	6.023	10 ²³	10	23
4.18×10^{0}	4.18	10 ⁰	10	0

Which of the above are not in scientific notation? * 210×10^{-8} ; ** 0.061×10^{-3} Re-write them in scientific notation. * 2.10×10^{-6} ** 6.1×10^{-5}

Write the following in scientific notation:

Write the following in ordinary decimal notation:

6.18 x
$$10^4$$
 = **61,800** 225 x 10^{-1} = **22.5**
3.86 x 10^{-5} = **0.0000386** 158 x 10^2 = **15,800**
3.99 x 10^{-2} = **0.0399** 1.64 x 10^0 = **1.64**

Solve the following, with correct units.

Which cannot be calculated as written? (#4, #8)

1.
$$15.3 \times 10^{-7} \text{ m} + 9.7 \times 10^{-7} \text{ m} = 2.5 \times 10^{-6} \text{ m or } 25 \times 10^{-7} \text{ m}$$

2.
$$(4.86 \times 10^{10} \text{ mm}) \times (7.20 \times 10^6 \text{ mm}) = 3.50 \times 10^{17} \text{ mm}^2$$

3.
$$(6.49 \times 10^{-3} \text{ cm}^3) / (1.56 \times 10^{-4} \text{ cm}^2) = 4.16 \times 10^1 \text{ cm}$$

4.
$$2.33 \times 10^4 L + 6.18 \times 10^3 L = 2.948 \times 10^4 L$$

5.
$$(15.9 \times 10^{-3} \text{ g}) / (4.47 \times 10^{-3} \text{ mL}) = 3.557 \times 10^{0} \text{ g/mL}$$

6.
$$2.14 \times 10^{1} \text{ g/mL}) \times (5.0 \times 10^{1} \text{ mL}) = 1.07 \times 10^{3} \text{ g}$$

7.
$$5.22 \times 10^{-3} \text{ g}$$
 - $2.18 \times 10^{-3} \text{ g}$ = **3.04 x 10⁻³ g**

* 8.
$$9.78 \times 10^4 \text{ km} - 6.91 \times 10^2 \text{ km} = 9.7109 \times 10^4 \text{ km}$$

- * Cannot be calculated as written since the exponents don't match! Your calculator automatically corrects this.
- 9. The distance from the earth to the sun is 1.5×10^8 kilometers. Calculate the number of millimeters.

$$1.5 \times 10^8 \text{ km } \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1000 \text{ mm}}{1 \text{ m}} = 1.5 \times 10^{14} \text{ mm}$$

10. Calculate the number of grams in 19.4×10^{-4} kilograms.

$$19.4 \times 10^{-4} \text{ kg } \times \underline{1000 \text{ g}} = 1.94 \text{ g}$$

$$1 \text{ kg}$$

11. Calculate the number of milliliters of water in a pool that contains 5.0×10^7 liters.

$$5.0 \times 10^7 L \times 1000 \text{ mL} = 5.0 \times 10^{10} \text{ mL}$$

12. Calculate the number of ounces in 1.6×10^4 tons of coal.

1.6 x
$$10^4$$
 tons x $\frac{2000 \text{ lbs}}{1 \text{ ton}}$ x $\frac{16 \text{ oz}}{1 \text{ lb}}$ = 5.12 x 10^8 oz

13. Determine the number of centimeters in 8.6 x 10⁻⁹ km.

$$8.6 \times 10^{-9} \text{ km } \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{100 \text{ cm}}{1 \text{ m}} = 8.6 \times 10^{-4} \text{ cm}$$

14. The human eye is most sensitive to light having a wavelength of 5.55×10^{-9} meters. What is this wavelength in millimeters?

$$5.55 \times 10^{-9} \text{ m} \times 1000 \text{ mm} = 5.55 \times 10^{-6} \text{ mm}$$

15. An experiment requires 3.59 x 10⁻² kg of a chemical. What is this mass in mg?

$$3.59 \times 10^{-2} \text{ kg} \times \underline{1000 \text{ g}} \times \underline{1000 \text{ mg}} = 3.59 \times 10^4 \text{ mg}$$

16. In a water molecule (H_2O) the distance between a hydrogen atom and the oxygen atom is 9.6×10^{-11} m. What is the distance in cm?

9.6 x
$$10^{-11}$$
 m x $\frac{100 \text{ cm}}{1 \text{ m}} = 9.6 \text{ x } 10^{-9} \text{ cm}$