Empirical Formulas

Chemical = combination of elements & subscripts

= represents # of elements present in pure compound

Empirical = lowest (simplest) integer ratio of elements

= determined empirically (by experiment)

= maybe generalized (like C_nH_{n+2})

= formulas for ionic compounds

= RATIO of elements present

For $C_4H_8O_2$ = chemical For CH_3OH = chemical

 C_2H_4O = empirical CH_4O = empirical

To determine an Empirical Formula:

Find masses (g) of elements in a sample of the compound

Usually given

Convert from grams to moles

Use Molar Mass (determined from Periodic Table)

Express lowest integer ratio of moles

Divide each number of moles by the smallest number of moles

Write simplest formula using integer ratio

Calculate the empirical formula for a compound composed of 19.32 g iron and 8.304 g oxygen

Determine # Moles: ratio gives formula

(Use Periodic Table to get atomic weight of Fe and O)

19.32 g
$$\times \frac{1 \text{ mole}}{55.847 \text{ g}} = 0.345945 \implies 0.3459 \text{ mol}$$

For Oxygen (O)

8.304 g x
$$\frac{1 \text{ mole}}{16.00 \text{ g}} = 0.5190 \implies 0.5190 \text{ mol}$$

Determine Mole Ratio: ratio gives formula

Ratio Fe / O =
$$0.3459 / 0.5190 = 0.6666 \implies 2:3$$

Formula = Fe₂O₃

(Formulas usually written with metal first)

Alternative Method:

Divide # moles by smallest # of moles (This forces one value to 1) Multiply both # moles by same integer Until small, whole numbers are reached

0
0.5190
1.5
3

Find the empirical formula of a compound containing 20.21 g Fe and 5.79 g O.

Determine # Moles: ratio gives formula

(Use Periodic Table to get atomic weight of Fe and O)

For Iron (Fe)

20.21 g x
$$\frac{1 \text{ mole}}{55.847 \text{ g}} = 0.361882 \Rightarrow 0.3619 \text{ mol}$$

For Oxygen (O)

$$5.79 \text{ g} \times \frac{1 \text{ mole}}{16.00 \text{ g}} = 0.361875 \implies 0.362 \text{ mol}$$

Determine Mole Ratio: ratio gives formula

Ratio Fe / O =
$$0.3619/0.362 = 0.999724 \implies 1.0$$

Formula = FeO

Alternative Method:

Divide # moles by smallest # of moles (This forces one value to 1) Multiply both # moles by same integer Until small, whole numbers are reached

Fe	0
0.3619	0.3619
1	1

Find the empirical formula of a compound that contains 741 g lead and 76.0 g oxygen

Determine # Moles: ratio gives formula

(Use Periodic Table to get atomic weight of Pb and O)

For Lead (Pb)

741 g x
$$\frac{1 \text{ mole}}{207.19 \text{ g}} = 3.57643 \implies 3.58 \text{ mol}$$

For Oxygen (O)

$$76.0 \text{ g} \times \frac{1 \text{ mole}}{16.00 \text{ g}} = 4.75$$

Determine Mole Ratio: ratio gives formula

Ratio Pb / O =
$$3.58 / 4.75 = 0.753 \implies 0.75 \implies 3:4$$

Formula = Pb₃O₄

Determine the empirical formula of a compound that is 62.8% Cl, 31.9% C, and 5.3% H.

When given elemental %, assume 100 grams total

Get weights from the Periodic Table

For carbon:

31.9 g x
$$\frac{1 \text{ mole}}{12.011 \text{ g}} = 2.6559 \implies 2.66 \text{ mol}$$

For hydrogen:

multiply mole ratios by 2
$$\rightarrow$$
 C₃H₆Cl₂ 5.3 g x $\frac{1 \text{ mole}}{1.008 \text{ g}}$ = 5.25794 \rightarrow 5.3 mol

For chlorine:

62.8 g x
$$\frac{1 \text{ mole}}{35.453 \text{ g}} = 1.77136 \Rightarrow 1.77 \text{ mol}$$

Determine Ratio: C: H: Cl:

Divide by 1.77: 1.5 2.99 1
$$\rightarrow$$
 C_{1.5}H_{2.99}Cl

multiply mole ratios by 2 → C₃H₆Cl₂

Calculate the empirical formula of malonic acid whose composition is 34.6% carbon, 3.9% hydrogen, and 61.5% oxygen.

When given elemental %, assume 100 grams total

Get weights from the Periodic Table

For carbon:

34.6 g x
$$\frac{1 \text{ mole}}{12.011 \text{ g}} = 2.88069 \implies 2.88 \text{ mol}$$

For hydrogen:

$$3.9g x 1 mole = 3.86905 3.9 mol 1.008 g$$

For oxygen:

61.5 g x
$$\frac{1 \text{ mole}}{16.00 \text{ g}} = 3.84375 \implies 3.84 \text{ mol}$$

Determine Ratio: C: H: O:

Divide by 2.88: 1.00 1.35 1.33 \rightarrow CH_{1.35}O_{1.33}

Need integer; multiply by 3 → C₃H₄O₄

Alternative Method: Divide # moles by smallest # of moles (This forces one value to 1) Multiply both # moles by same integer Until small, whole numbers are reached

C	H	O
2.88	3.9	3.84
1	1.35	1.33
2	2.7	2.66
3	4	4

Think Moles Not Grams

Assignment

Start Taking Unit 6 Practice Test
Blackboard only records highest score
Take until multiple 100's have been scored (questions are variable)
(Gives sense of test exam format and content)

The Practice Quiz is very similar to the Unit Exam Success on Unit exam is directly related to practice exam experiences

At this point:

Elements & polyatomic ions should be memorized