Balancing Equations

Chemical Equations

Reactants **→** Products

Color change Solid forms (Cloudiness ... precipitation) Bubbles (gas) form Heat and/or flame is produced Heat is absorbed (cooling)

Reactants

Substances present at the beginning Starting materials Initial materials that enter into the reaction; things consumed

Products

Substances present at the end of the reaction New materials formed Ending materials; things produced

Chemical Equations

For: Reactants $(A + B) \rightarrow Products (C + D)$

+ is read as

"plus"

"and"

is read as

"yields"

"produces"

"forms"

May use "state symbols" (often as subscript):

(aq) = aqueous, dissolved in water

(s) = solid, precipitate; also

(1) = liquid

(g) = gas

Chemical Equations Must

be "balanced"

follow the Law of Conservation of Mass

Total mass reactants = Total mass products

No mass is lost during chemical reaction

No atoms destroyed during ordinary reactions

Atoms recombined into new materials (products)

Total # atoms reactants = Total # atoms products

Total # atoms reactants = Total # atoms products

To balance: need same # atoms on both sides of the ->

Start with correct chemical formulas

WORK WITH COEFICIENTS

(Trial and error until atoms on both sides are equal)

For Hydrogen + Oxygen yields water

Write Starting Materials and Products

$$H_2(g) + O_2(g) \rightarrow H_2O(l)$$

Count atoms → **must be same on both sides**

2 H 2 O → 2 H 1 O

There is a tendency (wrong) to balance with subscripts:

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$

But, H₂O is not the same as H₂O₂

Chemical Equations

Balance With Coefficients, not subscripts

'cause balancing with subscripts changes the reaction

Remember, H₂O is chemically not the same as H₂O₂

Copyright Larry P. Taylor All Rights Reserved

For Hydrogen + Oxygen yields water

Write Starting Materials and Products

$$H_2(g) + O_2(g) \rightarrow H_2O(l)$$

Count atoms → **must be same on both sides**

Oxygen unbalanced; Try

$$H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$$

Count atoms → must be same on both sides

Oxygen now balanced, try

2
$$H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$$

Count atoms → **must be same on both sides**

Chemical Equations

Which is correct?

$$H_2(g) + O_2(g) \rightarrow H_2O(1) + O(g)$$

$$H_2(g) + O(g) \rightarrow H_2O(l)$$

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$$

Which is correct?

Oxygen should be diatomic, so these are wrong

$$H_2(g) + O_2(g) \rightarrow H_2O(l) + O(g)$$

$$H_2(g) + O(g) \rightarrow H_2O(l)$$

Equation balanced, but not for water:

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$

Equation balanced for water formation:

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$$

Copyright Larry P. Taylor All Rights Reserved

Hints for Balancing

I tend to work with whole numbers ...

fractional coefficients tend to confuse

Bottom line:

No fixed rule ... every reaction is different Requires practice to develop balancing skills

My two guidelines:

Start with a metal or most complex reaction material Save water (or diatomic gasses) last step

Genius is 10% inspiration and 90 % perspiration.

Thomas Alva Edison

Balance This Chemical Equation

$$TiCl_4 + H_2O \rightarrow TiO_2 + HCl$$

Safety Tip: HCl is a corrosive acid; lab precautions needed

Start with Chlorine:

$$TiCl_4 + H_2O \rightarrow TiO_2 + 4HCl$$

Atom Count: 1 Ti; 4 Cl; 2 H; 1 O → 1 Ti; 4 Cl; 4 H; 2 O

Ti & Cl balanced; H & O are not

Hint: Leave H & O for last, especially if water is involved

4 H suggests 2 waters, so try 2 H₂O

$$TiCl_4 + 2H_2O \rightarrow TiO_2 + 4HCl$$

Atom Count: 1 Ti; 4 Cl; 4 H; 2 O → 1 Ti; 4 Cl; 4 H; 2 O

Success!

Balance This Chemical Equation

$$Fe_3O_4 + H_2 \rightarrow Fe + H_2O$$

Start with Iron

$$Fe_3O_4 + H_2 \rightarrow 3 Fe + H_2O$$

Atom Count: 3 Fe; 2 H; 4 O → 3 Fe; 2 H; 1 O

Fe & H balanced; O is not ... suggests water is key

Four O on the start side suggests 4 waters on product side; try 4 H₂O

$$Fe_3O_4 + H_2 \rightarrow 3 Fe + 4 H_2O$$

Atom Count: 3 Fe; 2 H; 4 O → 3 Fe; 8 H; 4 O

Fe & O balanced; H is not ... finish by balancing H

$$Fe_3O_4 + 4 H_2 \rightarrow 3 Fe + 4 H_2O$$

Success!

Balance This Chemical Equation

$$MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$$

Safety Tip: Cl2 is toxic; lab precautions needed

Mn Balanced: Start with 4 Chlorine on product side

$$MnO_2 + 4 HCl \rightarrow MnCl_2 + Cl_2 + H_2O$$

Atom Count: 1 Mn; 4 Cl; 4 H; 2 O → 1 Mn; 4 Cl; 2 H; 1 O

O is odd on product side, try making it even

$$MnO_2 + 4 HCl \rightarrow MnCl_2 + Cl_2 + 2 H_2O$$

Atom Count: 1 Mn; 4 Cl; 4 H; 2 O → 1 Mn; 4 Cl; 4 H; 2 O

Success!

Balance This Chemical Equation

$$NH_3 + O_2 \rightarrow N_2 + H_2O$$

Reaction has odd/even combination of diatomic molecules Start with Nitrogen ... try

$$2 \text{ NH}_3 + \text{O}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O}$$

Atom Count: 2 N; 6 H; 2 O → 2 N; 2 H: 1 O

Oxygen unbalanced ... try

$$2 \text{ NH}_3 + \text{O}_2 \rightarrow \text{N}_2 + 2 \text{H}_2\text{O}$$

Atom Count: 2 N; 6 H; 2 O → 2 N; 4 H: 2 O

Hydrogen unbalanced ... try changing N in product

$$4 \text{ NH}_3 + \text{O}_2 \rightarrow 2 \text{ N}_2 + 2 \text{ H}_2\text{O}$$

Atom Count: 4 N; 12 H; 2 O → 4 N; 4 H: 2 O

H & O unbalanced ... try balancing H with water

$$4 \text{ NH}_3 + \text{O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

Atom Count: 4 N; 12 H; 2 O → 4 N; 12 H: 6 O

Only O unbalanced ...finish with O on starting side

$$4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

Atom Count: 4 N; 12 H; 6 O → 4 N; 12 H: 6 O

Success!

Balance This Chemical Equation

$$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$$

Safety Tip: SO₂ is a corrosive acid; lab precautions needed

Atom Count: 1 Fe; 2 S; 2 O → 2 Fe; 1 S; 5 O

Everything unbalanced ... start with iron ... try

$$2 \text{ FeS}_2 + O_2 \implies \text{Fe}_2O_3 + 4 \text{ SO}_2$$

Atom Count: 2 Fe; 4 S; 2 O → 2 Fe; 4 S; 11 O

Oxygen odd & unbalanced ... try another Fe on product side

$$4 \text{ FeS}_2 + O_2 \implies 2 \text{ Fe}_2O_3 + 4 \text{ SO}_2$$

Atom Count: 4 Fe; 8 S; 2 O → 4 Fe; 4 S; 14 O

Copyright Larry P. Taylor All Rights Reserved

Sulfur unbalanced ... try to balance Sulfur

$$4 \text{ FeS}_2 + O_2 \implies 2 \text{ Fe}_2O_3 + 8 \text{ SO}_2$$

Atom Count: 4 Fe; 8 S; 2 O → 4 Fe; 8 S; 22 O

Only Oxygen unbalanced ... finish by balancing Oxygen

$$4 \text{ FeS}_2 + 11 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3 + 8 \text{ SO}_2$$

Atom Count: 4 Fe; 8 S; 22 O → 4 Fe; 8 S; 22 O

Success!

Balance This Chemical Equation

$$Sb_2S_3 + HCl \rightarrow H_3SbCl_6 + H_2S$$

Safety Tip: H₂S is toxic; lab precautions needed

Atom Count: 2 Sb; 3 S; 1 H; 1 Cl → 1 Sb; 1 S; 5 H; 6 Cl

Start with Antimony & Sulfur

$$Sb_2S_3 + HCl \rightarrow 2 H_3SbCl_6 + 3 H_2S$$

Atom Count: 2 Sb; 3 S; 1 H; 1 Cl → 2 Sb; 3 S; 12 H; 12 Cl

Hydrogen & Chlorine Balanced Together

$$Sb_2S_3 + 12 HCl \rightarrow 2 H_3SbCl_6 + 3 H_2S$$

Atom Count: 2 Sb; 3 S; 12 H; 12 Cl → 2 Sb; 3 S; 12 H; 12 Cl

Success!

Practice Improves Performance

Assignment

Start Taking Unit 6 Practice Test

Blackboard only records highest score

Take until multiple 100's have been scored (questions are variable)

(Gives sense of test exam format and content)

The Practice Quiz is very similar to the Unit Exam Success on Unit exam is directly related to practice exam experiences

At this point:

Elements & polyatomic ions should be memorized