Solutions

Solution = homogeneous mixture = uniform composition

Reactions faster (better molecular interactions)

Volume measurements convenient

Solutions Characteristics:

Uniform distribution of components (homogeneous)

Components cannot be seen

Variable compositions

May exist in any of three states:

solid, liquid, or gas

Particles do not settle upon standing

Terms

Solvent

single substance that does the dissolving substance present in the largest amount

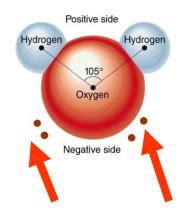
Solute

1 or more substance that is dissolved substance present in the lower amount

Solubility

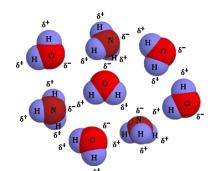
quantity of a solute that will dissolve at a fixed temperature typically expressed a grams solute/per 100 mL

Conventions


when solid or gas dissolved in liquid, solvent = liquid solute = solid or gas

Water as solvent = aqueous solution (aq)

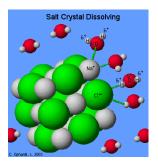
"universal solvent"

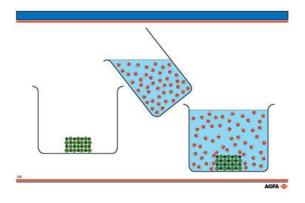

Solvent Examples		
Solve gas liqui	gas	Example O ₂ in N ₂ CO ₂ in H ₂ O
solid	l gas	H ₂ in Pd
gas	liquid	Clouds
liqui	d liquid	Alcohol in water
solid	l liquid	H ₂ O (from air) & NaOH
solid	l gas	S in Air
liqui	d solid	Ag in Hg
solid	l solid	Cu in Zn (brass)

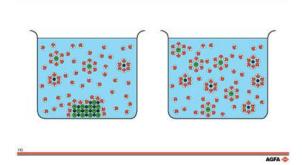
The Water Molecule

Unshared Electrons

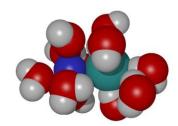
Dipole = unequal distribution of charge (like a magnet) created by electron repulsion between oxygen's 2 unshared pairs


Solution: NH₃ in H₂O


Allows networks of attraction between polar molecules


Dissolving Salts

At the molecular level: Ions separated from solid surface


- (-) charged ions at surface attracted by (+) (H) regions of water
- (+) charged ions at surface attracted by (-) (O) regions of water

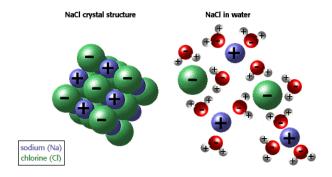
Ions become "Hydrated"

$$Na = Blue$$

 $Cl = Cyan$

H = White O = Red

Individual ions surrounded by water molecules


Dissociation (Dissolving)

Process of using water to separate ions of a substance sodium chloride dissociates when dissolved in water

$$NaCl_{(s)}$$
 \rightarrow $Na^+_{(aq)}$ + $Cl^-_{(aq)}$

A physical change

Results in a uniform mixture of water & Na+ & Cl-

Solution Process is Reversible

Dissolved particles move randomly as they leave salt crystal

Solution becomes homogeneous (stirring helps)
Dissolved particles may return to solid state (crystallize)

Equilibrium

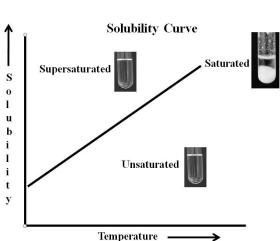
In a saturated (maximum solute possible) solution:

$$NaCl_{(s)}$$
 \rightarrow $Na^+_{(aq)}$ + $Cl^-_{(aq)}$

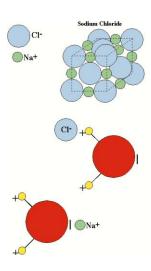
forward rate = reverse rate overall concentrations remain constant

Solubility Terms

Saturated

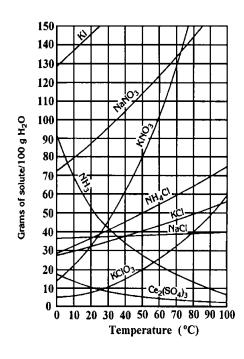

solution contains the maximum amount of solute A dynamic equilibrium exists

Unsaturated


solution contains less than the maximum amount of solute

Supersaturated

solution contains more than the maximum amount of solute carefully prepared unstable



Copyright Larry P. Taylor All Rights Reserved

Solubility Curves

Plot of amount of solute vs. temperature

Saturated On the solubility line

Unsaturated Below the line

Supersaturated Above the line

Supersaturation

Solubility is a function of temperature In general, increase in temperature increases solubility

Assume:

solubility of $X = 15 \text{ g}/100 \text{ g H}_2\text{O}$ at 25°C solubility of $X = 28 \text{ g}/100 \text{ g H}_2\text{O}$ at 80°C

So:

Place 18 g X in a beaker of water

heat to 80° C ... all 18 g of X dissolves Unsaturated since 18 g < 28 g solubility limit

Slowly cool back to 25°C

If left undisturbed, 18 g remain in solution Supersaturated since 18 g > 15 g solubility limit

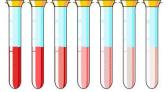
If disturbed, 3 grams immediately falls to the bottom. Saturated since 15 g is solubility limit

Supersaturation Examples

Carbonated beverages
gas (CO2) in liquid (water)
Rock Candy
solid (sugar) in liquid (water)
Decompression Sickness (Bends)
gas (N2) in liquid (tissues)
Reef Growth
solid (CaCO3) in water
Cumulus Clouds
liquid (water) in gas

Relative (Qualitative) Solution Concentration Terms

Concentrated


Contains a relatively large amount of solute **Dilute**

Contains a relatively small amount of solute

For Solution #1: 15.20 g NaNO₃ in 84.8 g water For Solution #2: 3.29 g NaNO₃ in 96.7 g water

Solution #1 more concentrated than #2

Solution #1 *less dilute* than #2 Solution #2 *more dilute* than #1 Solution #2 *less concentrated* than #1

Solution Compatibility (Miscibility)

Miscible

Liquids that dissolve in each other in all proportions Alcohol & water Vinegar & water

Immiscible

Liquids that do not dissolve in each other Separate into separate layers Hydrocarbons & water

Assignment

Start Taking Unit 9 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience