Solution Concentrations

% Concentration by Mass

grams of solute per 100 grams of solution

Mass
$$\%$$
 = $\frac{\text{grams solute}}{(\text{g solute} + \text{g solvent})}$ x 100

NOTICE: g solution = g solute + g solvent

Example

- 5.5% (by mass) dextrose:
- 5.5 g dextrose dissolved in 100 g solution
- 5.5 g dextrose dissolved in 94.5 g water

May also be expressed as 5.5 % (m:m)

Calculate the mass % of a solution made by dissolving 3.8 g CaBr2 in 58.0 g H2O.

Mass % =
$$\frac{\text{grams solute}}{(\text{g solute} + \text{g solvent})} \times 100$$

Mass % = $\frac{3.8}{(3.8 \text{ g} + 58.0 \text{ g})} \times 100$
Mass % = $\frac{3.8 \text{ g}}{(3.8 \text{ g} + 58.0 \text{ g})} \times 100 = 6.14887 \Rightarrow 6.1$

How many grams of sucrose are contained in 235 grams of a 4.82% (by mass) aqueous sucrose solution?

$$(4.82) (235 g) / 100 = 11.327 \rightarrow 11.3 g$$

How much of a 13.5% (by mass) NaCl solution is needed to obtain 47.0 grams NaCl?

grams solution =
$$(100)$$
(grams solute)
(Mass %)

grams solution =
$$(\underline{100})(47.0 \text{ g})$$

(13.5)

Two Forms of the % by Mass Problem

Solute = NaBr

Solvent = Water

Solution = NaBr + Water

Determine % by Mass for a solution:

1. Prepared by dissolving 22.4 g of NaBr in 287 g of water:

% NaBr (by mass) =
$$22.4 \text{ g} / (22.4 \text{ g} + 287 \text{ g}) \text{ x } 100 = 7.24 \text{ %}$$

2. Prepared by dissolving 22.4 g of NaBr in water to make 287 g of solution:

% NaBr (by mass) =
$$22.4 \text{ g} / (287 \text{ g}) \text{ x } 100 = 7.80 \%$$

Find the % concentration of a solution prepared by dissolving 2.20 g BaCl₂ in 57.9 g of water.

Mass % =
$$\frac{\text{grams solute}}{(\text{g solute} + \text{g solvent})}$$
 x 100
= $\frac{2.20}{(2.20 \text{ g} + 57.9 \text{ g})}$ x 100
= 3.66

How many grams of sodium sulfate are in 505 g of a 15.0% solution? How many grams of water?

$$\underline{\text{(grams solution)}(\text{Mass \%})} = \text{grams solute}$$

100

grams
$$\text{Na}_2\text{SO}_4 = \underline{(505 \text{ g}) (15.0)}$$
 grams $\text{H}_20 = 505 \text{ g} - 75.8 \text{ g}$
 100 grams $\text{H}_20 = 429.2 \text{ g}$

grams =
$$75.75 \rightarrow 75.8 \text{ g}$$

Weight (mass): Volume

Weighing solvents often cumbersome So, another form of practical measurement Weigh solute Dissolve in solvent Bring (accurately) to desired volume Express as % (w:v ... weight:volume)

Example

5.5 g of solute brought to 100 ml solution 5.5 % (w:v)

Molarity

Primary means of calculating solution concentrations

1 molar solution = molar mass dissolved in 1 L of solution

M = moles solute liters solution

Preparing Molar Solutions

Weigh solute

Dissolve in small amount of solvent

Bring (accurately) to desired volume using a volumetric flask

A 1.50 M aqueous solution of HCl contains 1.50 moles of HCl dissolved in enough water to make 1.00 liter of solution. How many *grams* of HCl would be in 1.0 liter of this solution?

Given: 1.50 moles HCl

Wanted: g HCl

Grams requested, need molar mass for HCl (36.46)

1.50 moles HCl x
$$\underline{36.46 \text{ g}} = 54.69 \text{ g} \implies 54.7 \text{ g}$$

Calculate the molarity of a solution prepared by dissolving 23.9 grams of KBr in $400.0 \text{ mL} \ (0.4000 \text{ L})$ of solution.

Given: 23.9 g KBr in 400 mL Wanted: Molarity (M/L)

Grams requested, need molar mass for KBr (119.01)

23.9 g x
$$\frac{1 \text{ mole}}{119.01 \text{ g}}$$
 x $\frac{1}{0.4000 \text{ L}}$ = 0.502059 M \Rightarrow 0.502 M

How many grams of KBr must be added to water to prepare 250.0 mL of a 0.188 M KBr solution

Given: 0.188 M/L KBr

Wanted: g KBr

Grams requested, need molar mass for KBr (119.01)

$$0.188 \text{ Moles}$$
 x 250.0 ml x $\frac{1}{1000 \text{ ml}}$ x $\frac{119.01 \text{ g}}{1 \text{ Mole}}$ = 5.59347 g → 5.59 g

Check:

5.59 g x
$$\frac{1 \text{ mole }}{119.01 \text{ g}}$$
 x $\frac{1}{0.250 \text{ L}}$ = 0.187883 moles/L→ 0.188 M

How many mL of a 0.475 M KBr solution can be prepared from 9.51 g KBr?

Given: 9.51 g KBr

Wanted: mL of 0.475 M/L solution

Grams requested, need molar mass for KBr (119.01)

9.51 g x
$$\frac{1 \text{ mole}}{119.01 \text{ g}}$$
 x $\frac{1}{0.475 \text{ M}}$ x $\frac{1000 \text{ mL}}{1 \text{ L}}$ = 168.230 \Rightarrow 168 mL

How many moles of sodium sulfate (Na₂SO₄) are present in 250 mL of a 0.150 M solution of sodium sulfate?

Given: 250 mL; 0.150 M solution Wanted: moles sodium sulfate

All calculations in moles; no need for molar mass

$$\frac{0.150 \text{ M}}{1 \text{ L}} \times 0.250 \text{ L} = 0.0375 \text{ moles}$$

How would you prepare $2.50\ L$ of a $0.360\ M$ solution of sulfuric acid (H2SO4) starting with $18.0\ M$ sulfuric acid

Given: Dilution of 18.0 M H2SO4 Needed: 2.50 L of 0.360 M solution Hint: moles in final solution → same as moles added

 $0.360 \text{ M} \times 2.50 \text{ L} = 18.0 \text{ M} \times \text{ X Liters}$

$$X = \underbrace{0.360 \text{ M} \times 2.50 \text{ L}}_{18.0 \text{ M}}$$

 $X = 0.0500 L \rightarrow 50.00 mL$

So, Dilute 5.00 mL 18 M H2SO4 to 2.50 L of solution

KI is the additive in "iodized" table salt. Calculate the molarity of a solution prepared by dissolving 2.41 g of KI in water and diluting to 50.0 mL.

Given: 2.41 g KI (molar mass = 166.01) Wanted: molarity of 50.0 mL solution

Determine Moles:

$$2.41 \text{ g} \times \frac{1 \text{ mole}}{166.01 \text{ g}} = 1.452 \times 10^{-2} \text{ moles}$$

Determine Molarity (moles/L)

$$\frac{1.452 \times 10^{-2} \text{ moles } \times 1000 \text{ mL}}{50.0 \text{ mL}} = 0.2903$$
 → 0.290 M 1 L

Potassium hydroxide is used in making liquid soap, as well as many other things. How many grams would you use to prepare 2.50 L of 1.40 M KOH?

Given: 2.50 L of 1.40 M KOH

Wanted: grams KOH (molar mass = 56.11)

Moles present in solution

$$2.50 \text{ L x } \frac{1.40 \text{ M}}{1 \text{ L}} = 3.5 \text{ moles}$$

Gram equivalent

3.5 moles x
$$\frac{56.11 \text{ g}}{1 \text{ mole}} = 196.4 \text{ g} \implies 196 \text{ g}$$

Solution Stoichiometry

How many mL of a 0.155 M CaCl₂ solution are required to react with Na₂SO₄ to form 15.8 g CaSO₄? Na₂SO₄ + CaCl₂ → 2 NaCl + CaSO₄(s)

Given: 15.8 g CaSO₄

Wanted: mL 0.155 M CaCl₂ solution

Grams requested, need molar mass for CaSO₄ (136.14)

Start with # moles of given (known) substance:

15.8 g CaSO₄ x
$$\frac{1 \text{ mole}}{136.14 \text{ g}}$$
 = 0.1161 moles → 0.116 moles CaSO₄

Use per expression from reaction coefficients → moles wanted

$$0.116 \text{ moles CaSO4} \times \underline{1 \text{ mole CaCl}_2} = 0.116 \text{ moles CaCl}_2$$
 1 mole CaSO4

Convert moles wanted to equivalent solution concentration

0.116 moles CaCl₂ x
$$\frac{1}{0.155}$$
 M $\frac{L}{1}$ x $\frac{1000 \text{ mL}}{1}$ = 748 mL CaCl₂

How many mL of a 0.155 M CaCl₂ solution will react with 47.7 mL of a 0.248 M Na₂SO₄ solution? Na₂SO₄ + CaCl₂ → 2 NaCl + CaSO₄(s)

Given: 47 mL of 0.248 Na₂SO₄ Wanted: mL 0.155 M CaCl₂ solution

How many grams of AgCl can be precipitated by adding excess NaCl to 65.0 mL of 0.757 M AgNO₃? AgNO_{3(aq)} + NaCl_(aq) \rightarrow AgCl_(s) + NaNO_{3(aq)}

How many mL of 0.084 M AgNO3 solution would be needed to react with excess NaCl solution to produce 0.64 g of solid AgCl

What mass of barium fluoride can be precipitated from 25.0 mL of 0.465 M NaF by adding excess barium nitrate solution?

Assignment

Continue taking Unit 9 Practice Test

The Practice Ouiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience

Copyright Larry P. Taylor All Rights Reserved