Titrations

Titration Terms

Titration

Controlled addition of a liquid into a vessel to measure the volume that reacts with a substance already in the vessel

Indicators

substances that change color to signal when to stop a titration Organic dyes whose color is sensitive to pH

Endpoint

point in a titration when the indicator changes color

Standard Solution

solution of known concentration used in a titration

Neutralization

double replacement reaction: an acid and a base react to form water and a salt

Indicators

Complex Organic Compounds Change color with pH Choice depends on desired end-point

1

Phenolphthalein

phenolphthalein pH < 8.2

One of the most common indicators used Laxative

C.S.I. = used to determine if stain is blood

Kastle-Meyer Spot Test

Phenolphthalein plus sample

 $Add\; H_2O_2$

Hemoglobin present oxidizes to pink form

pH = measurement of molar H⁺ concentration The H means [H⁺] (molar concentration of hydrogen ions) The p in pH means "the negative logarithm of

$$[H^{+}] = 1 \times 10^{-pH}$$

pH 7 means the concentration of $H^+ = 10^{-7} M$

 $pH < 7 \rightarrow acidic$

 $pH = 7 \rightarrow neutral$

 $pH > 7 \rightarrow basic (alkaline)$

Common Substances

Titration Experiment

Neutralization Reactions

For
$$HNO_3 + Mg(OH)_2 \rightarrow$$

mL's of 0.835M HNO3 needed to neutralize 38.5 mL of 0.522M Mg(OH)2?

Complete and balance reaction

$$2 \text{ HNO}_3 + \text{Mg(OH)}_2 \rightarrow \text{Mg(NO}_3)_2 + 2 \text{ H2O}$$

Given: 38.5 mL 0.522 M magnesium hydroxide

Wanted: ml's 0.0835 M nitric acid

Start with # moles of given (known) substance

Mg(OH)₂:
$$0.522 \text{ moles}$$
 x 1 L x $38.5 \text{ ml} = 0.0201 \text{ moles}$

Problem is now just another Stoichiometry thing (moles → moles)

Given: 0.00201 Moles magnesium hydroxide

Wanted: ml's 0.835 M nitric acid

Use per expression from reaction coefficients:

$$0.0201 \text{ moles Mg(OH)}_2 \text{ x} \quad \underline{2 \text{ moles}} \quad \underline{\text{HNO}}_3 = 0.0402 \text{ moles}$$

 1 mole Mg(OH)_2

Finally, convert moles to solution available:

How many mL of 0.0957 M NaOH neutralize 20.0 mL of 0.180 M HCl?

As Linear String: Starting with standard molarity

As Linear String: Starting with mL's standard added

$$20.00 \text{ mL x}$$
 0.180 moles HCl x 1 mole NaOH x 1000 mL = 37.6 mL 1000 mL 1 mole HCl $0.0957 \text{ moles NaOH}$

How many mL of 0.266 M KOH are needed to neutralize 25.0 mL of 0.172 M H₂SO₄? Write the balanced reaction

 $H_2SO_4 + 2 KOH \rightarrow K_2SO_4 + 2 H_2O$

As Linear String: Starting with standard molarity

As Linear String: Starting with standard ml's added

20.5 mL x $0.172 \text{ moles H}_2SO_4$ x 2 moles KOH x 1 L x 1000 mL = 26.6 mL 1000 mL 1 mole H_2SO_4 0.266 moles 1 L

How many milliliters of 0.832 M HCl are needed to neutralize 1.46 grams of sodium carbonate? 2 HCl + Na₂CO₃ → H₂O + CO₂ + 2 NaCl

 $1.46 \text{ g Na}_2\text{CO}_3 \text{ x } \frac{1 \text{ mole }}{105.98 \text{ g}} \text{ x } \frac{2 \text{ mole }}{1 \text{ mole Na}_2\text{CO}_3} \text{ } \frac{1}{0.832 \text{ moles HCl}} \text{ x } \frac{1000 \text{ mL}}{1 \text{ L}} = 33.1 \text{ mL}$

Neutralization Reactions: Solution Stoichiometry

Determine moles present in given solution
Use reaction coefficients ("per expression") to get moles wanted
Convert moles wanted to solution concentration

At endpoint:

Moles added ($\underline{\text{Moles}}_{1000 \text{ mL}}$ x mL standard) = moles present in standard

Moles present standard x "per expression" = moles present in unknown

moles present in unknown x 1000 ml = Molarity (M /L) unknown ml unknown L

Assignment

Continue Taking Unit 9 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience

Copyright Larry P. Taylor All Rights Reserved