Chemistry 101 – Unit 9 Practice Problems

1.	161 grams of Na ₂ CO ₃ are dissolved in enough water to make 4.6 L solution.				
	a. What is a solution?				
	b. What is the solute in this example?				

- c. What is the solvent in the example?
- d. How many moles of Na₂CO₃ are being dissolved in this example?
- e. What is the molarity (M) of the solution prepared in this example?
- f. If 225 mL of this example solution are poured into a flask, how many moles of Na₂CO₃ have been put into the flask?
- a. How many grams of CaCl₂ must be added to water to make 200.mL of a solution that is 0.875 M CaCl₂?
 - b. What is the solvent in this example?
 - c. What is the solute in this example?
 - d. How many moles of CaCl₂ would be in 68.9 mL of the 0.875 M solution?

3.	What volume,	in mL,	of 0.4050 N	A calcium	chloride	reacts	completely	with
25	.00 mL of 0.280	00 M si	lver nitrate	?				

$$2 \text{ AgNO}_3 + \text{CaCl}_2 \rightarrow 2 \text{ AgCl} + \text{Ca(NO}_3)_2$$

Given:

Wanted:

Path:

Factors:

4. For
$$2 \text{ AgNO}_3 + \text{MgBr}_2 \rightarrow 2 \text{ AgBr}(s) + \text{Mg}(\text{NO}_3)_2$$

a. How many grams of AgBr can be prepared when 58.0 mL of 0.264 M AgNO₃ react with excess MgBr₂?

b. How many mL of 0.833 M AgNO₃ are required to react with 73.1 mL of 0.552 M MgBr₂?

c. If 205 mL of a $MgBr_2$ solution react completely with 42.95 mL of 0.439 M $AgNO_3$ solution, what must be the molarity of the $MgBr_2$ solution?