Titration Calculations

At Enpoint:

- 1. Moles Standard (Given) Added:
 - $(\underline{\text{Moles}}_{1000 \text{ ml}} \text{ x ml added})$
- 2. Moles in Unknown:
- 1 x (<u>Reaction Coefficient Wanted</u>) Reaction Coefficient Given
- 3. Unknown Molarity (mole/Liter):
- 2 x (Moles Unknown) Volume Unknown

Generalized Titration Pathway

Entry & Exit Points Depend On: Given Wanted

A student finds that 15.80 mL of 0.2840 M H_2SO_4 are required to neutralize a 20.00 mL sample of a certain NaOH solution. What is the molarity of the NaOH solution? $H_2SO_4 + 2 \text{ NaOH} \implies \text{Na}_2SO_4 + 2 \text{ H}_2\text{O}$

Given: 15.8 mL of 0.248 M sulfuric acid

Wanted: molarity of 20 mL solution of sodium hydroxide

1. The flow of logic: Start with given and get moles H2SO4

$$0.284 \text{ moles}$$
 x $\frac{1}{1000 \text{ mL}}$ x 15.8 mL = 4.487 x 10⁻³ moles → 4.49 10⁻³ moles H₂SO₄

2. Use "per expression" to convert to moles sodium hydroxide

$$4.49\ 10^{-3}\ moles\ H_2SO_4\ x\ \underline{2\ mole\ NaOH}\ =\ 8.97\ x\ 10^{-3}\ moles\ NaOH$$
 $1\ moles\ H_2SO_4$

3. Convert moles NaOH to molarity of the solution:

$$\frac{8.97 \times 10^{-3} \text{ moles NaOH}}{20.0 \text{ mL}}$$
 x $\frac{1000 \text{ ml}}{1 \text{ L}}$ = 0.4485 moles/L → 0.449 M

But, we should solve as linear string in one continuous operation

A student finds that 34.8 mL of 0.483 M KOH are required to neutralize a 10.0 mL sample of a H₃PO₄ solution. What is the molarity of the H₃PO₄ solution?

$$H_3PO_4 + 3 KOH \rightarrow K_3PO_4 + 3 H_2O$$

1. Start with standard molarity 2. 3.

$$\frac{0.4830 \text{ moles KOH}}{1000 \text{ mL}} \times 34.80 \text{ mL} \times \frac{1 \text{ mole H}_{3}\text{PO}_{4}}{3 \text{ moles KOH}} \times \frac{1}{0.01000 \text{ L}} = 0.5603 \text{ M}$$

1. Start with standard added 2. 3.

$$34.80 \text{ mL x } \underbrace{0.4830 \text{ moles KOH}}_{1000 \text{ mL}} \quad \text{x } \underbrace{\frac{1 \text{ mole H}_{3} \text{PO}_{4}}_{3 \text{ moles KOH}} \text{ x } \underbrace{\frac{1}{0.01000 \text{ L}}}_{= 0.5603 \text{ M}} = 0.5603 \text{ M}$$

A student finds that 20.0 mL of 0.395 M HNO3 are required to neutralize a 29.7 mL sample of a certain KOH solution. What is the molarity of the KOH solution?

3.

3.

3.

3.

3.

1. Start with standard molarity 2.

1. Start with standard added 2. 3.

20.00 mL x
$$0.3950 \text{ moles}$$
 x 1 mole KOH x 1 mole HNO_3 0.02970 L = 0.2660 M

A student finds that 46.1 mL of 0.244 M NaOH are required to neutralize a 25.0 mL sample of a certain H₂C₂O₄ solution. What is the molarity of the H₂C₂O₄ solution? H₂C₂O₄ + 2 NaOH → Na₂C₂O₄ + 2 H₂O

1. Start with standard molarity 2.

1. Start with standard added

46.10 mL x
$$\underline{0.2440 \text{ moles NaoH}}$$
 x $\underline{1 \text{ mole H}_2C_2O_4}$ x $\underline{1}$ = 0.2250 M $\underline{1000 \text{ mL}}$ $\underline{2 \text{ moles NaOH}}$ 0.02500 L

2.

A student finds that 15.00 mL of 0.1860 M H_2SO_4 are required to neutralize a 26.30 mL sample of a certain NaOH solution. What is the molarity of the NaOH solution? $H_2SO_4 + 2 \text{ NaOH} \implies \text{Na}_2SO_4 + 2 H_2O$

1. Start with standard molarity 2.

1. Start with standard added 2.

Assignment

Continue Taking Unit 10 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience