Acids & Bases

Acids form "Sour"; bases from alkali (wood ashes)

Traditional Properties

	Acid	Base
Taste	Sour	Bitter
Feel	None	Slippery
Litmus	B → R	R → B
Phenolphthalein	Colorless	Magenta
With Carbonate	CO ₂ evolution	None
With "active" Metals	H ₂ evolution	None

With most metals None Water Insoluble

Acids React With Blue Litmus ("litmus test" Blue → Red in Acid (BRA))

Blue litmus paper with a drop of acid here

Acids react with carbonate ions: $2 H^{+}(aq) + CO_{3}(aq) \rightarrow H_{2}O(l) + CO_{2}(g)$

Atmospheric CO₂ + H₂O → H₂CO₃

Dissolves Carbonates A major erosion process

Activity Series

Acids react with "active" metals:

$$2 H^{+} (aq) + Zn \rightarrow Zn^{++} + H_{2}(g)$$

K, Ca, Na react with water: $2 \text{ Na} + 2 \text{ H}_2\text{O} \implies 2 \text{ NaOH} + \text{H}_2$

Mg, Al, Zn, Fe, Ni, Sn, Pb react with acids $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

Meta	ls Metal Ior	Reactivity	
K	K ⁺		
<u>Ca</u>	Ca ²⁺	reacts with <u>wate</u>	
<u>Na</u>	Na ⁺		
Mq	Mg ²⁺		
<u>Al</u>	Al3+		
<u>Zn</u>	Zn ²⁺	reacts with <u>acids</u>	
<u>Fe</u>	Fe ²⁺		
<u>Ni</u>	Ni ²⁺		
<u>Sn</u>	Sn ²⁺		
<u>Pb</u>	Pb ²⁺		
<u>H₂</u>	н+		
<u>Cu</u>	Cu ²⁺		
Hq	Hg ²⁺		
Aq	Ag+	highly unreactive	
<u>Pt</u>	Pt+		
<u>Au</u>	Au ³⁺		

pH Scale

measurement of relative acidity determined by hydrogen ion concentration values range between 0-14

 $pH < 7 \rightarrow acidic$

 $pH = 7 \rightarrow neutral$

pH > 7 → basic (alkaline)

measured using

indicators (pH papers or solutions)

pH: a measure of [H⁺] \rightarrow [H₃O⁺] = 1 x 10-pH

1887 – Svante Arrhenius, Swedish Chemist
Doctoral Thesis on Electrolytes
Lowest possible grade
1903 – thesis earned Noble Prize in Chemistry

Neither water, acids, nor salts conduct Current only flows by ionization

HA → H⁺ + A⁻

Acid = substance that forms hydrogen ions in water solution

$$HA(aq) \Rightarrow H^+(aq) + A^-(aq)$$

$$H^+ = proton$$

But, individual protons do NOT exist in water:

Arrhenius Acids form hydronium ions in solution

Arrhenius Theory: Bases

Base = substance that forms hydroxide ions (OH-) in water

 $MOH(aq) \rightarrow M^+(aq) + OH^-(aq)$

 $NaOH(aq) \rightarrow Na^+(aq) + OH^-(aq)$

 $Ca(OH)_2(aq) \rightarrow Ca^{+2}(aq) + 2 OH^{-}(aq)$

Arrhenius Bases form hydroxide ions in solution

Hydroxide also hydrated (H₇O₄-)

Bases turn Red Litmus → Blue

Bases turn phenolphthalein magenta

Bases react with most metal ions:

$$2 \text{ OH-(aq)} + \text{M}^{2+} \rightarrow \text{M(OH)}_2(s)$$

Most metal hydroxides insoluble in water (Common Pollutant)

Arrhenius Neutralization Reaction

$$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(1)$$

Problems With Arrhenius

Acidic properties depend upon dissociation in aqueous solutions Fails to predict behavior in non-polar solvents

Problems with Arrhenius Solved in 1923 Johanes Bronsted – Danish Chemist

Martin Lowry – English Chemist

Published simultaneously, so, name of both on the theory

Allows acids & bases in non-aqueous solutions

Allows bases other than hydroxide

Compound can be either an acid or base dependent on conditions

Bronsted-Lowry Theory of Acids & Bases

$$AH + B \rightarrow BH^+ + A^-$$

Acid = proton donor

Base = proton acceptor (Prime departure from Arrhenius)

Acid-Base reaction = proton transfer

Solvent can be non-aqueous

Bases do not have to have OH-

water can act as an acid or a base

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$
 (water a base)

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
 (water an acid)

amphoteric = substance that can act as an acid or as a base

An Amphoteric Ion

Bronsted-Lowry Neutralization Reactions

$$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(1)$$

$$NH_3 + HCl \rightarrow NH_4^+ + Cl^-$$

Arrhenius reactions are also Bronsted-Lowry Acid Base Reactions But, non-aqueous Bronsted reactions cannot be Arrhenius

Acid-Base: Conjugate Pairs

For "reversible" reaction

$$AH + B \leftarrow \rightarrow BH^+ + A^-$$

 $(\leftarrow \rightarrow \text{ is MS Word representation for a reversible reaction})$

A = Acid (H donor) in forward reaction

B = Base (H acceptor) in forward reaction

BH+ = Conjugate Acid (H donor in reverse reaction)

A- = Conjugate Base (H acceptor in reverse reaction)

"Follow the Protons"

Conjugate Pairs (Differ by ONLY a proton)

$$HCI$$
 + H_2O \longrightarrow H_3O^+ + CI^- acid base CA CB

What are the conjugate acid-base pairs:

A = Acid (H donor) in forward reaction

B = Base (H acceptor) in forward reaction

BH⁺ = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)

$$HC4H5O3 + PO4^{3-} \times HPO4^{2-} + C4H5O3^{-}$$

 $A = Acid = HC_4H_5O_3$

 $B = Base = PO_4^3$

 $BH^+ = Conjugate Acid = HPO_4^2$

 A^{-} = Conjugate Base = C₄H₅O₃⁻

$$HSO_4$$
 + HC_2O_4 $\leftarrow \Rightarrow SO_4$ + $H_2C_2O_4$

 $A = Acid = HSO_4$

 $B = Base = HC_2O_4$

 BH^+ = Conjugate Acid = $H_2C_2O_4$

A- = Conjugate Base = SO_4^2 -

$$HNO_2 + CN^- \leftarrow \rightarrow NO_2^- + HCN$$

 $A = Acid = HNO_2$

B = Base = CN

 BH^+ = Conjugate Acid = HCN

 A^{-} = Conjugate Base = NO_2^{-}

"Follow the Protons"

$$AH + B \leftarrow \rightarrow BH^+ + A^-$$

Removal of a proton from an acid forms its conjugate base Addition of a proton to a base forms its conjugate acid.

Conjugate pair formulas differ only by a proton.

Completed Table

Acid	Conjugate Base
HNO ₃	NO ₃ -
HBr	Br-
H_2O	OH -
H ₃ O ⁺	H ₂ O
H ₂ PO ₄ -	HPO ₄ 2-
HPO ₄ ² -	PO ₄ 3-
$C_2H_4O_2$	$C_2H_3O_2^-$

Relative Strengths of Acids & Bases

"strong" acid or base: 100 % completely ionized

"weak" acid or base: < 100 % ionized, partially ionized

$$HC_2H_3O_2 \leftrightarrow H^+ + C_2H_3O_2^-$$

 $HF \leftrightarrow H^+ + F^-$

Bronsted-Lowry Theory:

strong acid = excellent proton donor (readily loses H^+) weak acid = poor proton donor (does not lose H^+ easily)

strong base = very good proton acceptor (readily gains H^+) weak base = poor proton acceptor (does not gain H^+ easily)

The stronger the attraction for H⁺, the stronger the base

"Weak" or "Strong" is about "H+ attraction"

$$HCl + H_2O \leftarrow \rightarrow H_3O^+ + Cl$$
-
stronger stronger weaker weaker
acid base acid base

stronger acid forms the weaker base stronger base forms the weaker acid

Assignment

Continue Taking Unit 10 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience