Chemistry 101 – Unit 10 Answers to Problems

1. If 20.00 mL of H_2SO_4 are neutralized by 32.81 mL of 0.1124 M NaOH, what is the molarity of the sulfuric acid solution?

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4(aq) + 2 HOH(l)$$

$$32.81 \text{ mL NaOH x } \underbrace{0.1124 \text{ mol NaOH}}_{1000 \text{ mL NaOH}} \times \underbrace{1 \text{ mol H}_2 \text{SO}_4}_{2 \text{ mol NaOH}} \times \underbrace{1 \text{ mol H}_2 \text{SO}_4}_{20.00 \text{ mL H}_2 \text{SO}_4} \times \underbrace{1000 \text{ mL}}_{1 \text{ L}} = 0.09220 \text{ M}$$

2. If 25.00 mL of 0.0973 M HCl are neutralized by 30.20 mL of NaOH, what is the molarity of the NaOH solution?

$$HCL(aq) + NaOH(aq) \rightarrow NaCl(aq) + NaOH(l)$$

3. A student finds that 34.8 mL of 0.483 M KOH are required to neutralize a 10.0 mL sample of a certain H₃PO₄ solution. What is the molarity of the H₃PO₄ solution?

$$H_3PO_4(aq) + 3 KOH(aq) \rightarrow K_3PO_4(aq) + 3 HOH(l)$$

$$34.8 \text{ mL KOH } \times \underbrace{0.483 \text{ mol KOH}}_{1000 \text{ mL KOH}} \times \underbrace{1 \text{ mol } H_3 P O_4}_{3 \text{ mol KOH}} \times \underbrace{1}_{10.0 \text{ mL } H_3 P O_4} \times \underbrace{1000 \text{ mL}}_{1 \text{ L}} = 0.560 \text{ M}$$

4. A student finds that 20.0 mL of 0.395 M HNO₃ are required to neutralize a 29.7 mL sample of a certain KOH solution. What is the molarity of the KOH solution?

$$HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + HOH(aq)$$

$$20.0 \text{ mL HNO}_3 \text{ x } \underbrace{0.395 \text{ mol HNO}_3}_{1000 \text{ mL HNO}_3} \text{ x } \underbrace{1 \text{ mol KOH}}_{1 \text{ mol HNO}_3} \text{ x } \underbrace{1}_{29.7 \text{ mL KOH}} \text{ x } \underbrace{1000 \text{ mL}}_{1 \text{ L}} = 0.266 \text{ M}$$

5. A student finds that 15.0 mL of 0.186 M H₂SO₄ are required to neutralize a 26.3 mL sample of a certain NaOH solution. What is the molarity of the NaOH solution?

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow 2 H_2O(aq) + Na_2SO_4(aq)$$

6. A student finds that 46.1 mL of 0.244 M NaOH are required to neutralize a 25.0 mL sample of a certain $H_2C_2O_4$ solution. What is the molarity of the $H_2C_2O_4$ solution?

$$H_2C_2O_4(aq) + 2 NaOH(aq) \rightarrow 2 HOH(l) + Na_2C_2O_4(aq)$$

$$46.1 \ mL \ NaOH \ x \ \frac{0.244 \ mol \ NaOH}{1000 \ mL} \ x \ \frac{1 \ mol \ H_2C_2O_4}{2 \ mol \ NaOH} \ x \ \frac{1}{25.0 \ mL} \ H_2C_2O_4} \ x \ \frac{1000 \ mL}{1 \ L} \ = 0.225 \ M$$

7. Identify the conjugate acid and base pairs in each of the following:

a.
$$HCN + H_2O \leftrightarrow H_3O^+ + CN^-$$
 acid base conj. acid conj. base

b.
$$H_2CO_3 + H_2O \leftrightarrow H_3O^+ + HCO_3^-$$

acid base conj. acid conj. base

c.
$$OH^- + HSO_4^- \leftrightarrow SO_4^{2-} + H_2O$$

base acid conj. base conj. acid

d.
$$HCO_3^- + H_2PO_4^- \leftrightarrow HPO_4^{\ 2^-} + H_2CO_3$$

base acid conj. base conj. acid

8. Fill in the following table:

Conjugate Acid	Conjugate Base
HI	I ⁻
HClO	ClO ⁻
HS ⁻	S ²⁻
$HC_3H_5O_2$	$C_{3}H_{5}O_{2}^{-}$ $C_{2}O_{4}^{2-}$
$\mathrm{HC_2O_4}^-$	$C_2O_4^{\ 2-}$
$\mathbf{NH_4}^+$	NH ₃

- 9. a. If HClO₄ is a strong acid, is ClO₄⁻ a weak or strong base? ClO₄⁻ is a weak base.
 - b. If HF is a weak acid, is F a weak or strong base?F is a strong base.
- 10. Given the pH values, classify each of the following solutions as acidic, basic or neutral:
 - a. pH = 8.69 **basic**
- b. pH = 3.27 acidic
- c. pH = 7.00 neutral
- d. pH = 5.41 acidic

- e. pH = 11.38 **basic**
- f. pH = 13.24 **basic**
- 11. Which solution is more acidic, one whose pH = 2.58 or one whose pH = 4.95? pH = 2.58 more acidic
- 12. Which solution is more basic (less acidic), one whose pH = 8.62 or whose pH = 12.85?

pH = 12.85 more basic

13.	Match the following terms and definitions:					
	a. <u>B</u>	_ proton donor	b	E	produces H ₃ O ⁺ in solution	
	c. <u>H</u>	_ acid formed when base gains hydrogen ion	d	G	base formed when acid loses hydrogen ion	
	e. <u>A</u>	_ proton acceptor	f	C	_ measure of relative acidity	
	g. D	_ produces OH ⁻ in solution	n h	F	_pH meter	
	i. <u> </u>	_ indicators (pH paper)	j	Ι	_ pH of a solution	
A. Bronsted–Lowry Base B. Bronsted–Lowry Acid C. pH Scale						
D.	Arrhenius Bas	se E. Arrhenius Acid	d	F. Mo	ethod of determining pH	
G.	Conjugate Ba	se H. Conjugate Aci	id		I. Determined by H ⁺ concentration	