Atomic Theory

At the particulate (atomic) level:

Arrangement & energies of electrons define chemical properties (Basis of the Periodic Table)

Electrons are responsible for observed chemical reactions

(Nucleus is NOT involved in ordinary chemical reactions)

Arrangement & energies of electrons predict chemical behavior

Based on Quantum (Discrete Energy) Mechanics Particles behave as particle-waves (a duality) Particle-wave location only a probability function

Quantum Theory emerged after 300 year debate

Light Wave or Particle?

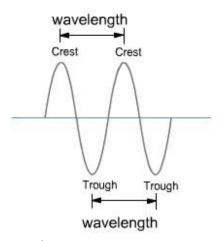
Christian Huygens

Particles vs. Waves

Issac Newton

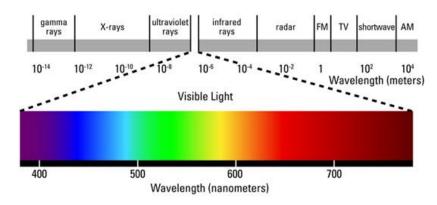
Particles = like tiny BB's

Wave = repeating oscillation


Wavelength (l) = distance between adjacent identical points

Frequency (n) = # of waves passing a fixed point in one second

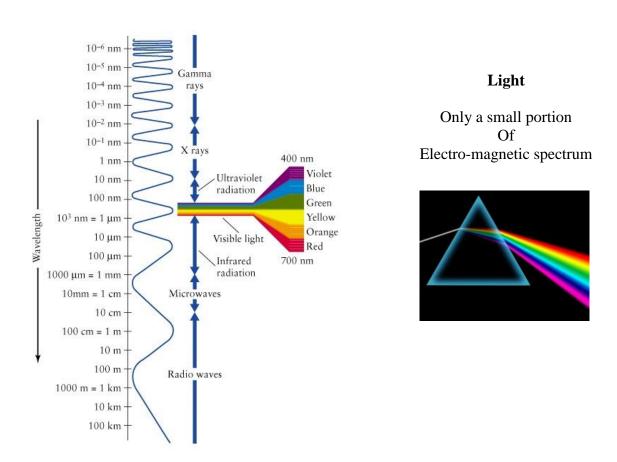
Frequency & Wavelength are inversely related: high frequency means short wavelength low frequency means long wavelength


> c = speed of light (in vacuum) = 299,792,458 m/sec (3 x 108 m/sec) = 186,000 mi/sec

c from Latin celeritus "swiftness"

Copyright Larry P. Taylor Ph.D. All Rights Reserved

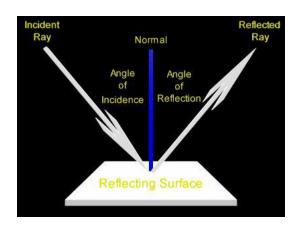
Electromagnetic Spectrum



Wave energy & frequency are directly related.

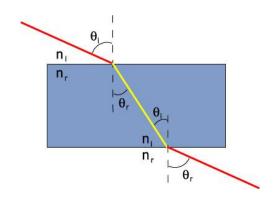
frequency increases, energy increases energy decreases, frequency decreases

Wave energy & wavelength are inversely related

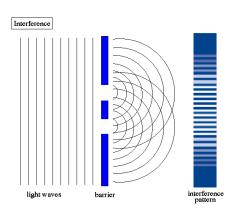

wavelength increases, energy decreases wavelength decreases, energy increases

Copyright Larry P. Taylor Ph.D. All Rights Reserved

Properties of Light

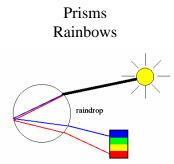

Reflection

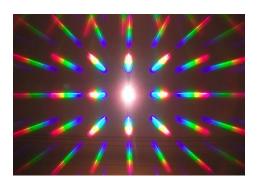
Mirror


Refraction

Bending Lenses

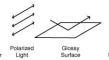
Interference



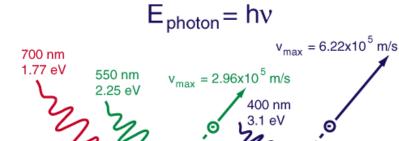

Amplification Cancellation

Diffraction

Polarization

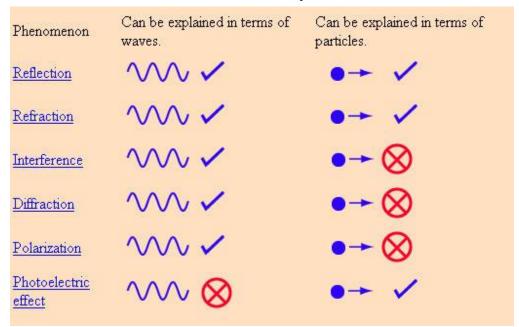


electrons

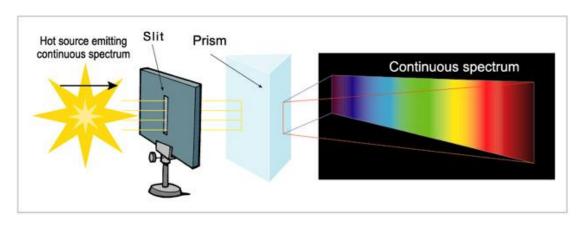


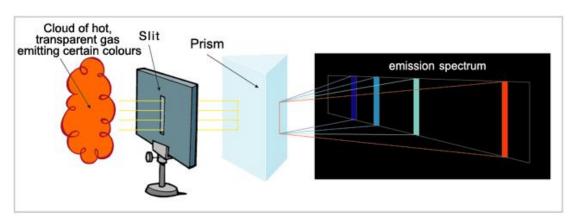
Strain Visualizations

Photoelectric Effect – light creates current (electrons) flow

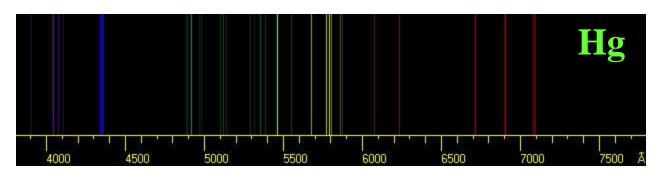

Potassium - 2.0 eV needed to eject electron

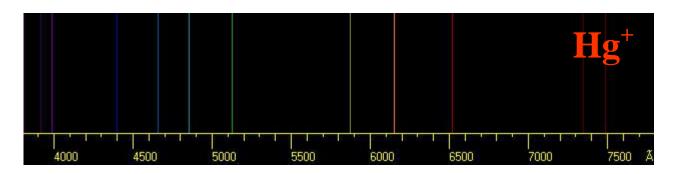
Photoelectric effect

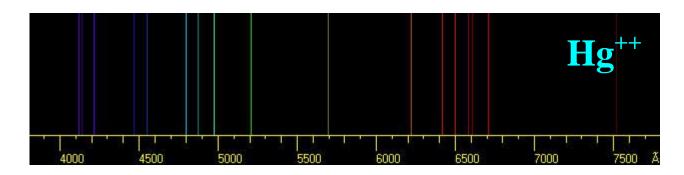

Not all colors (energies) Create photoelectric effect Only Possible by Energy transfer of particles


Einstein – Nobel Prize

Summary


Spectrum Experiment



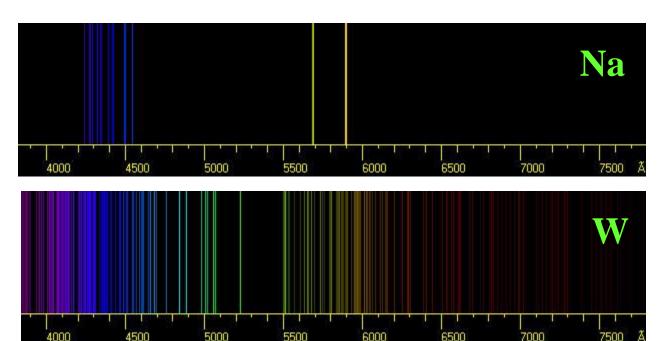


Copyright Larry P. Taylor Ph.D. All Rights Reserved

Emission Spectra: Measure of electron energy

Emission Spectra

Determines Observed Colors Of lights & flames

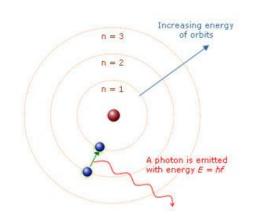


Na Vapor

"Fireplace Crystals"

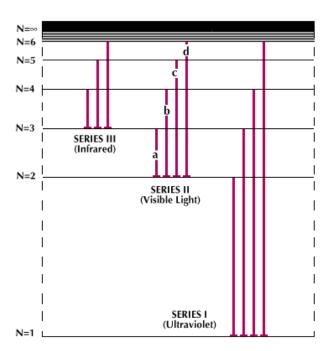
Hg Vapor

Emission Spectra: Indicators of Electron Energy


Emission spectra – Discrete energy lines

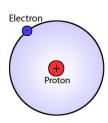
Define electron energies

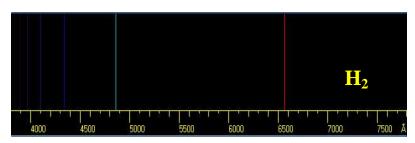
Different electron energies


Define chemical properties Define Periodic Table Arrangement

Electron States

Ground State → Absorbs energy → Excited state Excited State → Releases Energy → Ground State

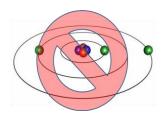

Emission Spectra: Excited State → Ground State Absorption Spectra: Ground State → Excited State



Bohr Model of the Hydrogen Atom

Energies of electrons are quantized Electrons (particles) reside in specific orbits around the nucleus Behavior explained by Coulomb's law of magnetic attraction Only worked for hydrogen atom with one electron

A stepping-stone to quantum theory



Heisenberg Uncertainty Principle

Based on a wave-particle duality

It is not possible to simultaneously know electron position & velocity It is not possible to know the exact path of electron travel (orbits)

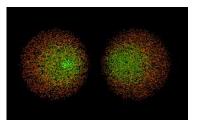
Modern Atomic Theory

Wave-Particle Duality

Explaining light and sub-atomic particles requires duality

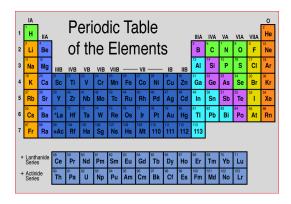
Quantum Mechanics

Discrete, non-continuous values of energy


Stair = discrete steps → Quantized Process Ramp = Continuous Process

Schrodinger (1925) Wave Equation

$$H\Psi = E\Psi$$


There exists a wave function, H, that describes the energy, E, of wave system Ψ In this construct for electrons, Ψ^2 = probability of finding an electron in space

$$\psi_{3,1,-1} = \frac{2}{27\sqrt{\pi r_0^5}} \sin \theta \cdot r \cdot \left(1 - \frac{r}{6r_0}\right) \exp\left(-r/3r_0\right) \cdot e^{-ip}$$

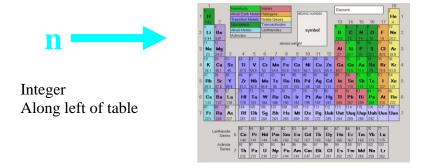
Defines all possible electron configurations in terms of 4 quantum numbers (analogous to an indexing or addressing system)

The Periodic Table can be explained using these numbers

Quantum Numbers

Name	Symbol	Meaning
Principal	n	Shell
Azimuthal	1	Sub-shell Type
Magnetic	mĮ	Sub-Shell Orientation
Spin	m_S	Spin

Principle Quantum Number


Value of $1, 2, 3, \dots$ infinity

Represents principle energy (shell) of an electron

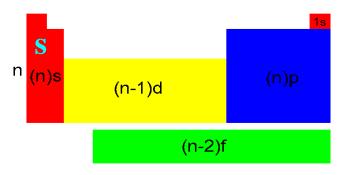
Increasing $n \rightarrow increasing energy$

Increasing $n \rightarrow$ increasing distance from the nucleus

Corresponds to the n value (row) on the periodic table

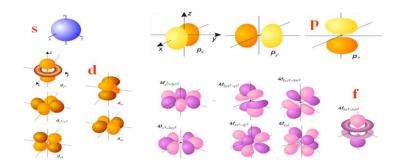
Azimuthal Quantum Number

value of $0 \le l \le n-1$ Represents orbital type


 $l = 0 \rightarrow s$ orbital (spherical)

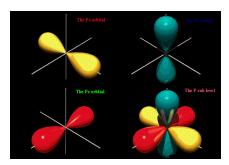
 $l = 1 \rightarrow p$ orbital (dumb-bell)

 $1 = 2 \rightarrow d$ orbital (varied shape)


 $1=3 \rightarrow f$ orbital (varied shape)

Corresponds to "Orbital Blocks" in the periodic table

Magnetic Quantum Number (m₁)


$$\label{eq:local_problem} \begin{split} & Value\ of \quad -l \leq m_l \leq l \\ & Represents\ spatial\ orientation\ (with\ respect\ to\ external\ field) \\ & Each\ orbital\ has\ a\ separate\ (magnetic)\ quantum\ number \end{split}$$

Planets Travel in Orbits; Electrons Occupy Orbitals

Pauli-Exclusion Principle

Maximum 2 electrons per orbital (orbital may have 0, 1 or 2 electrons) No two electrons have same set of quantum numbers

For p orbitals:

3 orbitals/shell x 2 electrons/orbital = 6 maximum p orbital electrons /shell

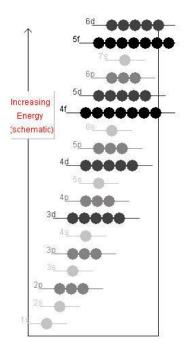
Spin Quantum Number (m_s)

Value of either $+\frac{1}{2}$ or $-\frac{1}{2}$ (for maximum 2 electrons / orbital) NOT spin around axis (electron a particle-wave, not particle)

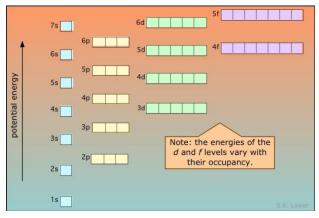
Hund's Rule


Each orbital gets one electron before accepting a second electron Orbitals will fill with maximum number of unpaired electrons

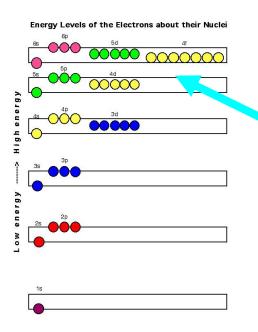
For p orbitals


Orbital Occupancy

Since each orbital can have 2 electrons, the maximum occupancy:

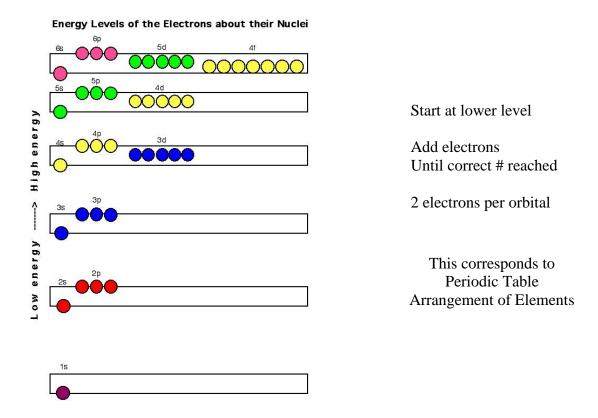

Copyright Larry P. Taylor Ph.D. All Rights Reserved

Aufbau Priciple


German for "construction" or build-up Termed coined by Niels Bohr in 1920

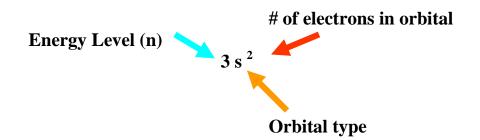
Electron Configurations for atoms of Periodic Table are constructed by progressively adding electrons to build the selected atom

Electron Energy Diagram

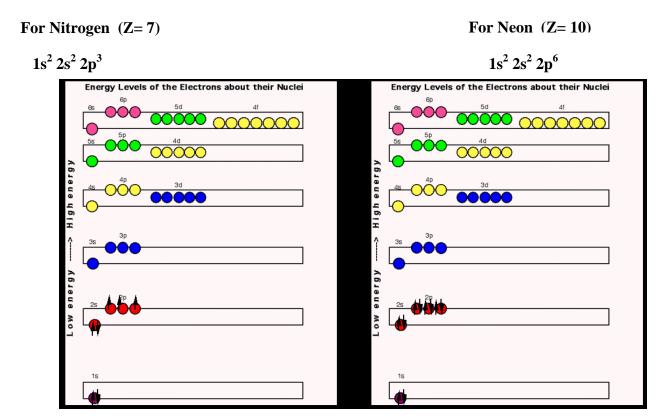


Energies

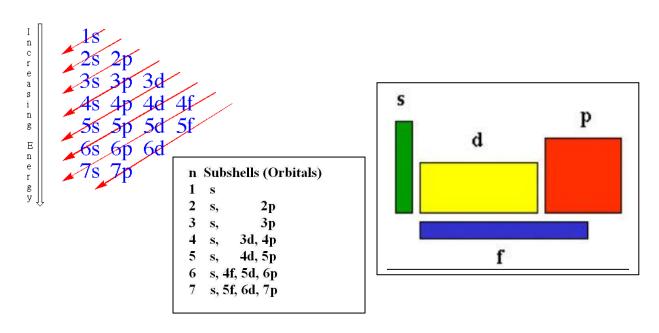
Large Between n's Small Between 1's


Small Differences
Allow Multiple Configurations
This Explains
Transition Element
Multiple Oxidation States

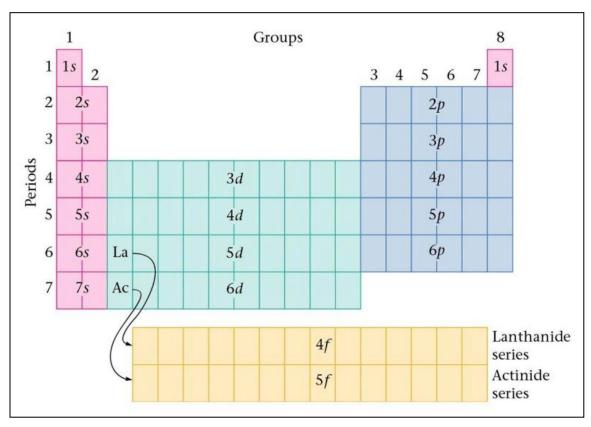
Worksheet


Electron Configuration Nomenclature

Shows sub-shell (orbital) distribution of electrons



Use Periodic Table to list electrons
List electron configuration in order of atomic number
Start with H (Z=1)
Continue adding electrons until desired element is reached


Worksheet - Examples

Order of Orbital Filling

Copyright Larry P. Taylor Ph.D. All Rights Reserved

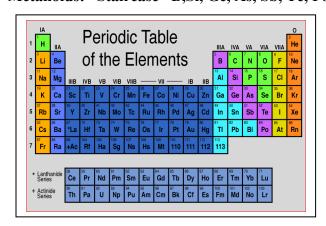
Aufbau Principle – Examples

 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 	1s ² = [He] [He] 2s ¹ [He] 2s ² [He] 2s ² 2p ¹ [He] 2s ² 2p ² [He] 2s ² 2p ³ [He] 2s ² 2p ⁴ [He] 2s ² 2p ⁶ = [Ne] [Ne] 3s ¹ [Ne] 3s ² [Ne] 3s ² 3p ¹ [Ne] 3s ² 3p ² [Ne] 3s ² 3p ³ [Ne] 3s ² 3p ⁴	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br	[Ar] 4s2 [Ar] 4s2 3d1 [Ar] 4s2 3d2 [Ar] 4s2 3d3 [Ar] 4s1 3d5* [Ar] 4s2 3d6 [Ar] 4s2 3d6 [Ar] 4s2 3d8 [Ar] 4s2 3d10* [Ar] 4s2 3d10 4p1 [Ar] 4s2 3d10 4p2 [Ar] 4s2 3d10 4p3 [Ar] 4s2 3d10 4p3 [Ar] 4s2 3d10 4p4 [Ar] 4s2 3d10 4p5
*	Exceptions to Aufbau	36	Kr	$[Ar] 4s^2 3d^{10} 4p^6$

Copyright Larry P. Taylor Ph.D. All Rights Reserved

Periodic Table – Summary of Families

Periodicity (Columns) a Function of Similar Outer Shell


Group 1A (1): alkali metals

Group 2A (2): alkaline earth metals

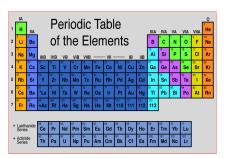
Group 7A (17): halogens

Group 8A (18): noble (inert) gases

Representative (1-2;13-18): The A Groups (the Edges) Transition Metals (3-12): The B Groups (the Center) Metalloids: "Staircase" B,Si, Ge, As, Sb, Te, Po

Lanthanides = upper, of lower rows Actinides = lower, of lower row

Predicted Chemical Properties Elements in the same column are similar Elements in different columns are different


Valence electrons	Family	Outer
Highest energy level (Outer-most shell) Representative elements involve s or p orbitals Maximum number for s + p orbitals = eight (the "octet") Periodic Table columns (Families) = same # valence electrons	Shell Group1A	ns1
	Group 2A	$\frac{ns}{ns^2}$
	Group 3A	ns2np1
Valence electrons determine chemical properties	Group 4A	ns^2np^2
	Group 5A	ns2np3
	Group 6A	ns2np4
	Group 7A	ns2np5
	Group 8A	ns2np6

Isoelectronic Atoms

Monatomic Ions With Noble Gas Electron Configurations Isoelectronic = identical electron configuration Atoms form ions to obtain a noble gas electron configuration

Na
$$1s^22s^22p^63s^1$$
Na⁺ $1s^22s^22p^6$
Ne $1s^22s^22p^6$ > Isoelectronic

O $1s^22s^22p^4$
O²⁻ $1s^22s^22p^6$
Ne $1s^22s^22p^6$
Ne $1s^22s^22p^6$
No $1s^22s^2p^6$
No $1s^2p^6$
No

Any Atom pair with the same electronic configuration is isoelectronic

Ne, F⁻, O²⁻ are isoelectronic Ar, Cl⁻, S²⁻ are isoelectronic

 Mg^{2+} , Na^+ , Ne are isoelectronic Ca^{2+} , K^+ , Ar are isoelectronic

Assignment

Start Taking Unit 10 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience