Lewis Dot Formulas

Gilbert Lewis (1916)

Valence electrons represented by dots

Valence electrons represented by dots around a core Elements have "A" group number of valence electrons

Tool for explaining bonding between atoms

I	II						III	IV	V	VI	VII	0
H•												He
Li•	•Be •						• B •	· C ·	N	0	F	Ne
Na•	•Mg•						• Al •	Si	Р	S	CI	Ar
K•	•Ca•						• Ga•	Ge	As	Se	Br	Kr
Rb•	•Sr •			Ī			• In •	Sn	Sb	Те	:::-	Xe
Cs•	•Ba•			Ī			• ŤI •	Pb	Bi	Ро	At	Rn
Metal Metalloid Nonmetal												

Members of a Chemical Family have same Lewis Dots

Start with element symbol Add electrons present in outer (valence) shell

Octet Rule

Eight valence electrons, ns²np⁶, is especially stable Noble gases do not tend to form compounds

Atoms lose or gain (transfer) electrons (for ionic compounds)
Atoms share electrons (for molecular or covalent bonded compounds)

Product: both atoms with "inert configuration"

Electron Moves (is taken by) To the non-metal: metals loses electrons

Nomenclature – Line for pair

Examples

molecule	Lewis structure	# regions of high electron density	molecule	Lewis structure	# regions of high electron density
BeCl ₂	:Cl-Be-Cl:	2	BF ₃	:F: :F' ^B \ F:	3
HCN	н−с≡л:	2	SO3	;;; S	3
CO ₂	ö=c=ö	2	NO ₂	Ö=Ñ~Ö:	3
CH ₄	H C—H H	4	NH ₃	H,","	4
PCl ₅	:Čl:; Cl: Cl: Cl:	5	SF ₆	:F: F:	6

Lewis Dot Formulas

Useful for simple ions Rapidly becomes tedious Does Not Provide Stereochemistry

Chemistry is a 3-D Phenomenon 2-D thinking limits horizons & understanding

Copyright Larry P. Taylor Ph.D. All Rights Reserved

Valence Shell Electron-Pair Repulsion (VSEPR)

Unshared Pairs Repel – maximize distance between pairs Creates Molecular Geometry

Valence Shell Electron Pair Repulsion (VSEPR)

Central Atom Bonding Determines Molecular Shape Number of electron bonding groups:

Linear Trigonal-planar Tetrahedral Trigonal-bipyramidal Octahedral

180°

AX2
Example: BF2

Example: BF3

Example: CF4

Example:

Copyright Larry P. Taylor Ph.D. All Rights Reserved

VSEPR Dictated Molecular Shapes

Assignment

Start Taking Unit 9 Practice Test

The Practice Quiz is very similar to the Unit Exam

Success on Unit exam is directly related to practice exam experience

Be able to draw Lewis Dot Formulas for the Common Elements