

Chemical Calculations

The first definitions, conversions, memorized periodic elements and polyanions provide the foundation for the rest of the class

LPT

Chemical Formula

Represents the particulate (molecular) species

Can be Atoms (Elements) H He Na Cu Hg

Can be Molecules (Compounds) CO₂ N₂ Cl₂ H₂SO₄

Can be Ionic (Formula Units) NaCl KBr Mg(NO₃)₂

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Masses

Atomic Number = Z → number protons in nucleus Mass Number = protons + neutrons

Atomic Mass = in AMU's, based on Carbon-12

= average weight of atoms in element

1 amu = 1/12 of mass of carbon-12 atom

Formula Mass = average mass of atoms in a formula

typically used for ionic compounds

Molecular Mass = average mass of atoms in a molecule typically used for molecular compounds

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Determining Formula / Molecular Mass

Obtain Correct Chemical Formula

Given

From Memory

Create From Name

For each element in Formula:

Count atoms

Find atomic mass in Periodic Table

Multiply # atoms x atomic mass

Sum & Round

Copyright Larry P. Taylor, Ph.D. All Rights Reserve

LPT

Calculating Molecular Mass (Weight)

Count atoms

Multiply # atoms x atomic mass

H₂O CO₂

Sum & round

Mass = 18.016 → 18.02 amu

= 44.01 amu

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

	•
Calculating Formula Mass (Weight)	
Count Atoms CaSO ₄ • 2 H ₂ O	
1 Ca 4 H 1 S 2 O Water - part of formula	
4 0	
Multiply # atoms x atomic mass; then sum & round CaSO ₄ 2 H ₂ O	
$2 \text{ H}_2\text{O}$ 1 Ca (1 x 40.08) = 40.08 amu 4 H (4 x 1.008) = 4.032 amu	
1 S $(1 \times 32.06) = 32.06$ amu 2 O $(2 \times 16.00) = 32.00$ amu	
4 O (4 x 16.00) = 64.00 amu	
Dry Mass = 136. 14 amu Hydrate Mass = 172.17 amu 36.032 → 36.03 amu	
Coppright Larry P. Taylor, Ph.D. All Rights Reserved	
	1
Calculating Formula Mass (Weight)	
Multiply everything inside a parenthesis by the subscript	
$Ba_3(PO_4)_2$	
Count atoms, multiply # atoms x atomic mass	
3 Ba (3 x 137.3) amu = 411.9 amu	
2 P (2 x 30.97) amu = 61.94 amu 8 O (8 x 16.00) amu = 128.00 amu	
Sum & round	
Mass = $601.84 \implies 601.8$ amu	
Copyright Larry P. Taylor, Ph.D. All Rights Reserved	
Calculating Formula Mass (Weight)	
Multiply everything inside a parenthesis by the subscript $Fe_2(SO_4)_3$	
Count atoms, multiply # atoms x atomic mass	
2 Fe (2 x 55.85) = 111.60 amu	
$3 \times (3 \times 32.07) = 06.21 \text{ amu}$	1
3 S (3 x 32.07) = 96.21 amu 12 O (12 x 16.00) = 192.00 amu	-
12 O (12 x 16.00) = 192.00 amu Sum & round	
12 O (12 x 16.00) = 192.00 amu	
12 O (12 x 16.00) = 192.00 amu Sum & round	

Calculate the formula mass of:

ammonium carbonate Write formula

 $(NH_4)_2 CO_3$

Count atoms, multiply # atoms x atomic mass

2 N = 2 x 14.01) amu = 28.02 amu 8 H = 8 x 1.008) amu = 8.064 amu

 $1 C = 1 \times 12.01$) amu = 12.01 amu

 $3 O = 3 \times 16.00$) amu = 48.00 amu

Sum & round

Mass = 96.094 → 96.09 amu

Converight Larry P. Taylor, Ph.D. All Pights Passarya

LPT

Calculate the formula mass of:

Iron (III) nitrate

Write formula

write for mu

Fe(NO₃)₃

Count atoms, multiply # atoms x atomic mass

1 Fe = (1×55.85) amu = 55.85 amu

 $3 N = (3 \times 14.01) \text{ amu} = 42.03 \text{ amu}$

9 O = (9×16.00) amu = 144.0 amu

Sum & round

Mass = 241.88 → 241.9 amu

Copyright Larry P. Taylor, Ph.D. All Rights Reserve

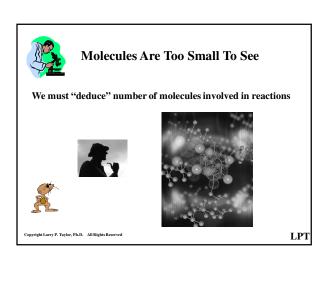
LPT

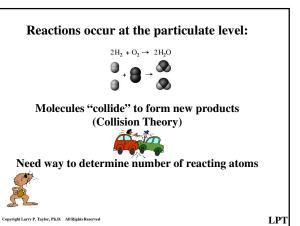
Science is "about measurement"

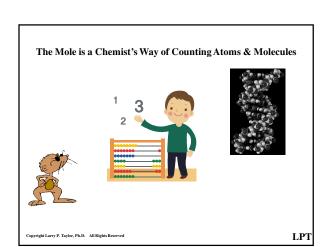
"If you can't measure it, it ain't science!"

Chemistry is science of measuring:

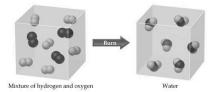
matter


and


interactions of matter



Copyright Larry P. Taylor, Ph.D. All Rights Reserved



Historical Problem

Observation:

2 volumes of hydrogen + 1 volume oxygen → 2 volumes water

Not consistent with 1800's understanding: 2 atomos hydrogen + 1 atomos oxygen → 2 atomos water Atomos = invisible smallest unit

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Avogadro's Hypothesis

Lawyer, turned chemist 1811- Proposed:

All gases at same temperature and pressure conditions contain the same number (value unknown) of molecules

formation of water explained by interactions of molecules, not atoms

 $2 H_2 + O_2 \rightarrow 2 H_2 O$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

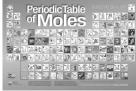
Loschmidt, gas kinetics 1885: ~2.6567772 x 10^{25} Planck, black body radiation 1900: 6.175×10^{23} Rutherford, radium radioactive decay 1903: 6.1 x 10^{23} Einstein, Brownian Movement 1905: 2.1 x 10^{23} Baptiste, 1909: coined term, "Avogadro's Number" Millikan, electron charge 1911: 6.064 x 10^{23} NIST, mass Carbon-12 1998: 6.0221415 ± 0.0000010 x 10^{23}

Common (class) use: 6.02 x 10²³ (3 sig figs)

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

The "Mole"

English equivalent of German "Mol"


Short form of "Molekulargewicht" (molecular weight)

Gram-Molecular Mass (Weight)

Formula/ Molecular Mass Expressed in grams

 $Contains\ Avogadro's\ Number\ (6.02\ x\ 10^{23}\ molecules\ or\ atoms)$ (602 sextillion)

The "Mole"

Mole always contains the same number of atomic units: 6.02 x 10²³ (Avogadro's Number)

Rigorously: exactly 6.02214076×10²³ elementary entities.

1 mole element = 6.02×10^{23} atoms

1 mole diatomic element = 6.02×10^{23} molecules

1 mole molecular compound = 6.02×10^{23} molecules

1 mole ionic compound = 6.02×10^{23} formula units

So, the "per" expressions:

1 mole = 6.02×10^{23} atoms

1 mole = 6.02×10^{23} molecules

1 mole = 6.02×10^{23} formula units

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

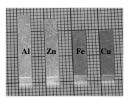
Elemental & Compound Masses

12.01 g C 1.008 g H HEY LADIES

= Avogadro's number of atoms or molecules

2.016 g H₂ 16.00 g O 32.00 g O₂

22.99 g Na 35.45 g Cl


18.02 g H₂O 58.44 g NaCl 159.7 g Fe₂O₃

108.0 g N₂O₅ ~68,000 g Hemoglobin Do you have mole problems? If so, call Avogadro at 602-1023

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Each metal bar contains 1 mole

The more dense the solid element, the less volume 1 mole occupies

Element	Atomic Mass (amu)	Density (g/mL)
Al	29.68	2.70
Zn	65.37	7.14
Fe	55.85	7.86
Cu	63.55	8.96

Density (g/mL) determined by: atomic mass + atomic geometry

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

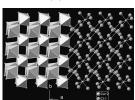
LPT

Molar Calculations (Atoms to Moles)

Calculate the number of moles in 4.88 x 10^{25} atoms of Cu

4.88 x 10^{25} atoms x $\frac{1 \text{ mole}}{6.02 \text{ x } 10^{23} \text{ atoms}}$ = 81.1 moles

Copyright Larry P. Taylor, Ph.D. All Rights Reserved


LPT

Molar Calculations (Moles to Formula Units)

Calculate the number of formula units in 5.331 moles of CaCl₂

5.331 moles x $\frac{6.02 \times 10^{23} \text{ fu}}{1 \text{ mole}} = 3.21 \times 10^{24} \text{ fu}$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Molar Calculations (Molecules to Moles)	
Calculate the number of moles in 1.74×10^{21} molecules of H_2O	
1.74 x 10^{21} molecules x $\frac{1}{6.02 \times 10^{23}}$ molecules = 2.89 x 10^{-3} moles	
Copyright Larry P. Taylor, Ph.D. All Rights Reserved LPT	
Molar Calculations (Molecules to Moles)	
How many moles are in 7.892 x 10^{24} molecules of $\mathrm{Al_2(SO_4)_3?}$	
$7.892 \times 10^{24} \text{ molecules Al}_2(SO_4)_3 \times \frac{1 \text{ mole Al}_3(SO_4)_3}{6.02 \times 10^{23} \text{ molecules Al}_2(SO_4)_3} = 13.1 \text{ moles}$	
Let the units drive the solution Copyright Larry P. Taylor, Ph.D. All Rights Reserved	-
Сорупун циту г. 11910г, га.ш. Анкция кентен	
Molar Calculations (Moles to Molecules)	
Calculate the number of molecules in 13.7 moles of CO ₂	-
13.7 moles x $\frac{6.02 \times 10^{23} \text{ molecules}}{13.7 \text{ molecules}} = 8.25 \times 10^{24} \text{ molecules}$	
1 mole	

LPT

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Molar	Calculations	(Moles t	o Grams)
withai	Caiculaubiis	(IVIOICS L	u Grams <i>i</i>

Calculate the number of grams of ${\rm CO_2}$ in 13.7 moles of ${\rm CO_2}$ Write formula

CO

Count atoms, multiply # atoms x atomic mass; Sum

 $1 C = 1 \times 12.01 = 12.01$

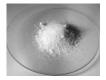
 $2 O = 2 \times 16.00 = 32.00$

Mass = 44.01 g/mole

Calculate mass in grams based on formula mass

 $\frac{44.01 \text{ g}}{1 \text{ mole}}$ x 13.7 moles = 602.937 → 603 g

Convright Larry P. Taylor, Ph.D. All Rights Reserved


LPT

Molar Calculations (Moles to Grams)

How many grams of the barium chloride in 0.0360 mole?

0.0360 moles BaCl₂ x $\frac{208.2 \text{ g BaCl}_2}{1 \text{ moles BaCl}_2}$ = 7.70 g

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Let the units drive the solution

LP.

Molar Calculations (Grams to Moles)

Calculate the number of moles in 88.0 grams of carbon dioxide Write formula

CO,

Count atoms, multiply # atoms x atomic mass; Sum

 $1 C = 1 \times 12.01 = 12.01$

 $2 O = 2 \times 16.00 = 32.00$

Mass = 44.01 g/mole

Calculate moles based on formula mass

88.0 g x $\frac{1 \text{ mole}}{44.01 \text{ g}}$ = 1.9996 mol \Rightarrow 2.00 mole

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

% Composition Calculations Percent (%) = parts per hundred % A = amount A x 100 total A Chemists ASSUME molar % unless otherwise specific Air Curbon Glosda Al Others Air Curbon Al Others Curbon Al Others Air Curbon Al Others Curbon Al Others Air Curbon Al Others Curbon Al Others Air Curbon Al Others Air

% Composition Calculations

Determine % calcium in calcium fluoride

Write the formula

CaF,

Count atoms, multiply # atoms x atomic mass; Sum

1 Ca 1 x 40.08 = 40.08 2 F 2 x 19.00 = 38.00

Mass of 1 mole = 78.08

% calcium = amount Ca / total compound mass x 100

% calcium = $\frac{40.08 \text{ g}}{78.08 \text{ g}} \times 100 = 51.33$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

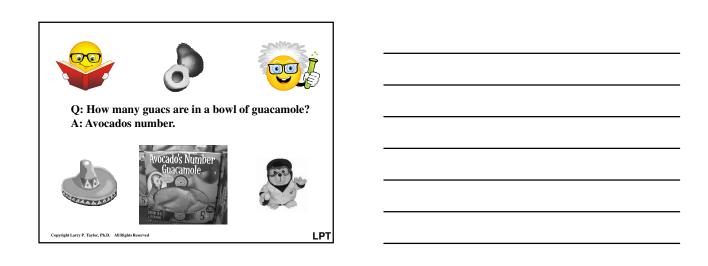
% Composition Calculations

Determine % fluorine in calcium fluoride

Write the formula

 CaF_2

Count atoms, multiply # atoms x atomic mass; Sum


1 Ca 1 x 40.08 = 40.08 2 F 2 x 19.00 = 38.00

Mass of 1 mole = 78.08

% fluoride = amount F / total compound mass x 100

% fluorine = $\frac{38.00 \text{ g}}{78.08 \text{ g}} \times 100 = 48.67$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

