


# **Formulas**

Chemical = combination of elements & subscripts

= represents # of elements present in pure compound

Empirical = lowest (simplest) integer ratio of elements

- = determined empirically (by experiment)
- = maybe generalized ( like  $C_nH_{n+2}$  )
- = formulas for ionic compounds
- = RATIO of elements present

For  $C_4H_8O_2$  = chemical For  $CH_3OH$  = chemical

 $C_2H_4O$  = empirical  $CH_4O$  = empirical



Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

## Which of these are empirical formulas?

C<sub>4</sub>H<sub>10</sub> No → C<sub>2</sub>H<sub>5</sub>  $C_2H_6O$ Yes  $Hg_2Cl_2$ No → HgCl No → CH  $C_6H_6$  $H_2O$ Yes  $\overline{H_2O_2}$ No → HO  $CCl_4$ Yes  $C_4H_7$ Yes No → CH<sub>2</sub>O  $C_6H_{12}O_6$ 





Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

To determine an Empirical Formula: Find masses  $\left(g\right)$  of each element in a sample of the compound Usually given Convert from grams to moles for each element Use Atomic Mass (determined from Periodic Table) grams each element x 1 mole = moles each element atomic mass g Express lowest integer ratio of moles Divide each number of moles by the smallest number of moles Write simplest formula using integer ratio Cation (most metallic) written first Subscripts must be whole numbers Find the empirical formula for a compound composed of 19.32 g iron and 8.304 g oxygen Determine # moles of each element (Use Periodic Table to get atomic mass of Fe and O)  $\,$ For Iron (Fe) 19.32 g x <u>1 mole</u> =  $0.345945 \Rightarrow 0.3459$  mol 55.847 g For Oxygen (O) <u>1 mole</u> = 0.5190 → 0.5190 mol 8.304 g x 16.00 g Determine mole ratio of elements: ratio gives formula Fe  $0.3459 \implies 1.00 \times 2 = 2$  $0.5190 \Rightarrow 1.50 \text{ x } 2 = 3$  $\mathbf{o}$ Formula =  $Fe_2O_3$ Copyright Larry P. Taylor, Ph.D. All Rights Reserved LPT Find the empirical formula of a compound containing 20.21 g Fe and 5.79 g O. Determine # moles of each element: (Use Periodic Table to get atomic mass of Fe and O) For Iron (Fe) 20.21 g x 1 mole =  $0.361882 \rightarrow 0.3619$  mol 55.847 g For Oxygen (O)  $5.79 \text{ g} \times 1 \text{ mole} = 0.361875 \implies 0.362 \text{ mol}$ 16.00 gDetermine mole ratio of elements: ratio gives formula 0.3619 **→** 1.00 0.362 **→** 1.00 o Formula = FeO

LPT

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Find the empirical formula of a compound that contains 741 g lead and 76.0 g oxygen.

**Determine # moles of each element:** (Use Periodic Table to get atomic mass of Pb and O)



For Lead (Pb)

741 g x 
$$\frac{1 \text{ mole}}{207.19 \text{ g}} = 3.57643 \implies 3.58 \text{ mol}$$

For Oxygen (O)

$$76.0 \text{ g} \text{ x} \frac{1 \text{ mole}}{16.00 \text{ g}} = 4.75 \text{ mol}$$

Determine mole ratio of elements: ratio gives formula

Pb 3.58 
$$\Rightarrow$$
 1.00 x 3 = 3  
O 4.75  $\Rightarrow$  1.33 x 3 = 4  
Formula = Pb<sub>3</sub>O<sub>4</sub>

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Find the empirical formula of a compound that is 62.8% Cl, 31.9% C, and 5.3% H.

When given elemental %, assume 100 grams total Get mass from the Periodic Table

For carbon:

31.9 g x 
$$\frac{1 \text{ mole}}{12.011 \text{ g}}$$
 = 2.6559  $\Rightarrow$  2.66 mol

For hydrogen:

$$5.3 \text{ g} \times \frac{1 \text{ mole}}{1.008 \text{ g}} = 5.25794 \implies 5.3 \text{ mol}$$

For chlorine:

62.8 g x 
$$\frac{1 \text{ mole}}{35.453 \text{ g}}$$
 = 1.77136  $\Rightarrow$  1.77 mol

Determine mole ratio of elements: ratio gives formula:

Multiply by 
$$2 \rightarrow 3 \quad 6 \quad 2$$



LPT

→ C<sub>3</sub>H<sub>6</sub>Cl<sub>2</sub>

Find the empirical formula of malonic acid whose composition is 34.6% carbon, 3.9% hydrogen, and 61.5% oxygen.

When given elemental %, assume 100 grams total Get mass from the Periodic Table

For carbon:

34.6 g x 
$$\frac{1 \text{ mole}}{12.011 \text{ g}}$$
 = 2.88069  $\Rightarrow$  2.88 mol

For hydrogen:

3.9 g x 
$$\frac{1 \text{ mole}}{1.008 \text{ g}}$$
 = 3.86905  $\Rightarrow$  3.9 mol

For oxygen:

61.5 g x 
$$\frac{1 \text{ mole}}{16.00 \text{ g}}$$
 = 3.84375  $\Rightarrow$  3.84 mol

**Determine Ratio: C:** H: Divide by 2.88 **1.00** 1.35 1.33

Multiply by  $3 \rightarrow 3$ 4 → C<sub>3</sub>H<sub>4</sub>O<sub>4</sub>

LPT

### **Molecular Formulas**



Derived from empirical formula and molar mass Molecular formula = (empirical formula) x n

> n = Molar Mass **Empirical Formula Mass**

Elemental analysis gives empirical formula Molar Mass from variety of techniques:

Mass spectroscopy Electrophoresis Gel Chromatography **Gas Diffusion** 



LPT

### **Molecular Formulas**



Determine the molecular formula of a compound with an empirical formula of  $P_2O_5$  (molar mass of 283.88 g/mol)

Determine Empirical Formula Mass:

 $P 2 \times 30.07 = 61.94$  $O 5 \times 16.00 = 80.00$ Molar Mass = 141.94

**Determine Ratio:** 

283.88 = 2141.94 Molecular Formula:



 $P_2O_5 \times 2 = P_4O_{10}$ 

LPT

## **Molecular Formulas**



Dichloroethane (98.96g/mol) is a common additive in gasoline that prevents engine knocking. Its percent composition is 71.65 %~ Cl; 24.27 %~ C; and  $4.07\,\%\,$  H. Determine its empirical and molecular formulas .

When given elemental %, assume 100 grams total Get mass from the Periodic Table

For carbon:

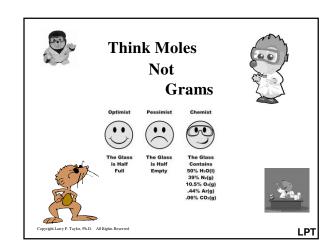
24.27 g x <u>1 mole</u> = 2.02 mol 12.011 g

For hydrogen:  $\frac{1 \text{ mole}}{1.008 \text{ g}} = 4.04 \text{ mol}$ 4.07 g x

For chlorine:

71.65 g x  $\frac{1 \text{ mole}}{35.453 \text{ g}}$  = 2.02 mol

 $\begin{array}{ccc} Molar \ Ratio \ Empirical \ Formula: \\ C_2H_4Cl_2 & \Longrightarrow & CH_2Cl \end{array}$ Empirical Formula Mass:


C: 1 x 12.011 = 12.011 H:  $2 \times 1.008 = 2.02$ Cl:  $1 \times 35.45 = 35.45$ Empirical Mass = 49.48

N = 98.96 / 49.48 = 2 Molar Formula:  $C_2H_4Cl_2$ 



LPT

4

