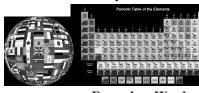


$\overline{\text{Types of Chemical Reactions}}$



Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Chemistry Is A Foreign Language

Elemental Symbols = Characters

Formula = Words $H_2 O_2 H_2O$ Reactions = Sentences $2 H_2 + O_2 \rightarrow 2 H_2O$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Types of Chemical Reactions

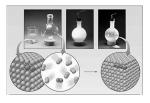
Knowledge of types useful for: Predicting products from starting materials

Estimating starting materials from analyzed products Evaluating potential health/safety issues

Focus on type recognition (pattern recognition), NOT individual reactions

Copyright Larry P. Taylor, Ph.D. All Rights Reserve

I PT


Combination (Synthesis) Reactions

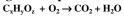
2 or more substances combine to form 1 single product

 $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$ $\begin{array}{ccc} 2 \text{ Al} & + 3 \text{ Br}_2 & \rightarrow 2 \text{ AlBr}_3 \\ 4 \text{ Fe} & + 3 \text{ O}_2 & \rightarrow 2 \text{ Fe}_2 \text{O}_3 \end{array}$

2 Na + Cl₂ → 2 NaCl

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Decomposition Reactions


Opposite of combination reaction 1 compound breaks down into simpler substances

 $\begin{array}{c} \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \\ \text{PCl}_5 \rightarrow \text{PCl}_3 + \text{Cl}_2 \\ \text{2 HgO} \rightarrow \text{2 Hg} + \text{O}_2 \end{array}$ $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$ $2 \text{ Cl}_2\text{O}_5 \rightarrow 2 \text{ Cl}_2 + 5 \text{ O}_2$ $2 \text{ N}_2\text{O}_5 \rightarrow \text{O}_2 + 4 \text{ NO}_2$ $2 \text{ NaCl} \rightarrow 2 \text{ Na} + \text{Cl}_2$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Burning or Complete Combustion

One reactant is organic (contains C & H; sometimes N & O) Other reactant is always O2

Products are always $CO_2 + H_2O$ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$ $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ (methane) (propane) (acetylene)

(ethanol) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ (glucose)

Single Replacement (Displacement)

One free element replaces another element Reactant & Product side have different free element Metal replaces another Metal

 $\begin{array}{ccc} Zn & + CuSO_4 & \rightarrow ZnSO_4 + Cu \\ Fe & + Cu(NO_3)_2 & \rightarrow Cu & + Fe(NO_3)_2 \\ Zn_{_{(s)}} + 2 \, Au(CN)_2 & \rightarrow 2 \, Au_{_{(s)}} + Zn(CN)_4 \,_{_{(au)}} \\ & & \text{Metal replaces Hydrogen} \end{array}$

 $Mg + 2 HCl \rightarrow MgCl_2 + H_2$

 $Zn + 2 HCl \rightarrow ZnCl_2 + H_2$

Non-Metal replaces another Non-Metal

 $Cl_2 + 2 NaBr \rightarrow 2 NaCl + Br_2$ $Br_2 + 2 KI \rightarrow 2 KBr + I_2$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Double Replacement (Displacement) Reactions

Precipitation

Precipitation: (+) and (–) ions switch partners ; AY insoluble

```
\begin{array}{lll} AgNO_{3(aq)} & + NaCl_{(aq)} & \rightarrow AgCl_{(s)} & + NaNO_{3(aq)} \\ CuSO_{4(aq)} & + 2 & NaOH_{(aq)} \rightarrow Cu(OH)_{2(s)} & + Na_2SO_{4(aq)} \\ AgNO_{3(aq)} & + KCl_{(aq)} & \rightarrow AgCl_{(s)} & + KNO_{3(aq)} \\ 2 & AgNO_{3(aq)} & + CaCl_{2(aq)} & \rightarrow 2 & AgCl_{(s)} & + Ca(NO_3)_{2(aq)} \\ CaCl_{2(aq)} & + Na_2SO_{4(aq)} \rightarrow CaSO_{4(s)} & + 2 & NaCl_{(aq)} \end{array}
```

 $\begin{array}{lll} \text{CaCl}_{2^{(aq)}} & + \text{Na}_2 \text{SO}_{4^{(aq)}} \rightarrow \text{CaSO}_{4^{(s)}} & + 2 \text{NaCl}_{(aq)} \\ \text{BaCl}_{2^{(aq)}} & + \text{Na}_2 \text{SO}_{4^{(aq)}} \rightarrow \text{BaSO}_{4^{(s)}} & + 2 \text{KCl}_{(aq)} \\ \text{K}_2 \text{CO}_3 & + \text{CaCl}_2 & \rightarrow \text{CaCO}_{3^{(ppt)}} + 2 \text{KCl} \\ \text{Pb(NO}_3)_2 & + 2 \text{KI} & \rightarrow \text{PbI}_2 \\ \end{array} \right] \\ & + 2 \text{KNO}$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

What Precipitates? Solubility Guidelines for Common Ionic Compounds in Water Soluble Ionic Compounds Important Exceptions Compounds containing NO₂ None CH₃COO Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+} Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+} Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+} Compounds of Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+} Cl⁻ Br⁻ I⁻ SO₄²⁻ Important Exceptions Insoluble Ionic Compounds Compounds of NH₄⁺, the alkali metal cations, and Ca²⁺, Sr²⁺, and Ba²⁺
Compounds of NH₄⁺ and the alkali metal cations
Compounds of NH₄⁺ and the alkali Compounds containing CO₃²⁻ PO₄3metal cations Compounds of the alkali metal cations, and NH₄⁺, Ca²⁺, Sr²⁺, and Ba²⁺ OH-**LPT** yright Larry P. Taylor, Ph.D. All Rights Reserved

What Precipitates?

 $KNO_3 mixed\ with\ BaCl_2$

Write ions formed:

 $KNO_3 \longrightarrow K^+ + NO_3^-$

 $BaCl_2 \longrightarrow Ba^{2+} + Cl^{-}$

Examine possible Cation-Anion Combinations:

	NO ₃ ·	Cl-
K+	KNO ₃	KCl
Ba ²⁺	Ba(NO ₃) ₂	$BaCl_2$

Solubility Rules: no insoluble compound So, no reaction occurs!

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

What Precipitates?

AgNO₃mixed with BaCl₂

Write ions formed:

 $AgNO_3 \longrightarrow Ag^+ + NO_3^-$

Examine possible Cation-Anion Combinations:

	NO ₃ -	CI
Ag+	AgNO ₃	AgCl
Ba ²⁺	Ba(NO ₃) ₂	BaCl ₂

Solubility Rules: AgCl = insoluble compound So, precipitation reaction occurs!

$$2 \text{ AgNO}_{3 \text{ (aq)}} + \text{ BaCl}_{2 \text{ (aq)}} \rightarrow 2 \text{ AgCl}_{\text{ (s)}} + \text{Ba(NO}_{3})_{2 \text{ (aq)}}$$

Copyright Larry P. Taylor, Ph.D. All Rights Reserve

LPT

Representing Reactions:

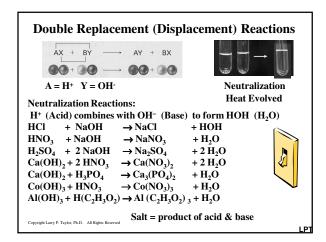
Molecular Equation: Complete Formulas of Reactants & Products

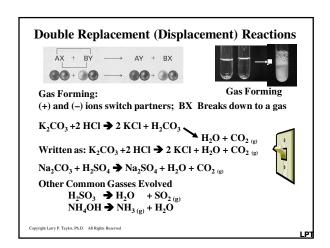
$$Pb(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \rightarrow PbSO_{4(s)} + 2 NaNO_{3(aq)}$$

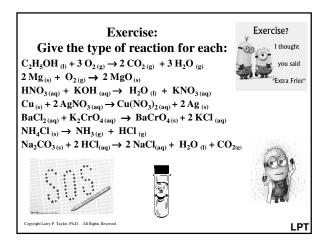
Complete Ionic Equation: Represents Strong Ionic Species Present

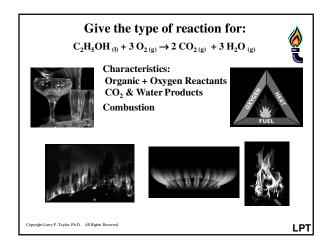
$$Pb_{+(aq)}^{2} + 2 NO_{3(aq)}^{-} + 2 Na_{(aq)}^{+} + SO_{4(aq)}^{2} \rightarrow PbSO_{4(s)} + 2 Na_{(aq)}^{+} + 2 NO_{3(aq)}^{-}$$

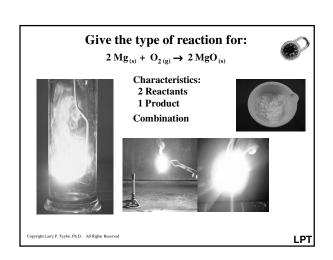
Net Ionic Changes: Shows only directly involved species


$$Pb^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \rightarrow PbSO_4_{(s)}$$


Ions not directly involved called *Spectator Ions* (Appear as ions on both sides of reaction arrow) Spectator Ions: NO₃⁻ Na⁺




Onvright Larry P. Taylor, Ph. D. All Rights Reserved


LPT

