



# Acids & Bases





Copyright Larry P. Taylor, Ph.D. All Rights Reserve

# **Acids & Bases: Traditional Properties**

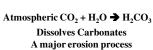
| Property             | Acid                      | Base            |
|----------------------|---------------------------|-----------------|
| Taste                | Sour                      | Bitter          |
| Feel                 | None                      | Slippery        |
| Litmus               | B <b>→</b> R              | R <b>→</b> B    |
| Phenolphthalein      | Colorless                 | Magenta         |
| With Carbonate       | CO <sub>2</sub> evolution | None            |
| With "active" Metals | H <sub>2</sub> evolution  | None            |
| With most metals     | None                      | Water Insoluble |





Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT


#### **Acids React With Blue Litmus**



"litmus test" (from lichens ... 1300 AD) Blue → Red in Acid (BRA)



Acids react with carbonate ions: 2  $H^+_{(aq)}$  +  $CO_{3(aq)}$   $\rightarrow$   $H_2O_{(l)}$  +  $CO_{2(g)}$ 





Copyright Larry P. Taylor, Ph.D. All Rights Reserved

#### 

Acids react with "active" metals:  $2~H^+_{~(aq)} +~Zn \rightarrow ~Zn^{++}~+~H_{2(g)}$ 

K, Ca, Na react with water: 2 Na + 2 H<sub>2</sub>O → 2 NaOH + H<sub>2</sub>

 $\begin{aligned} &Mg,Al,Zn,Fe,Ni,Sn,Pb\ react\ with\ acids\\ &Zn+H_2SO_4\ \clubsuit\ ZnSO_4\ +\ H_2 \end{aligned}$ 



LPT



Bases turn Red Litmus → Blue



Bases react with most metal ions:  $2~OH^{\textstyle \cdot}_{(aq)} + ~M^{2+} ~\to ~M(OH)_{2(s)}$ 

Most metal hydroxides insoluble in water

Metal Hydroxide Pollution: costly to clean



Bases turn phenolphthalein magenta

Bitter taste plant survival factor



LPT

pH Scale

Measurement of relative acidity

Determined by hydrogen ion concentration

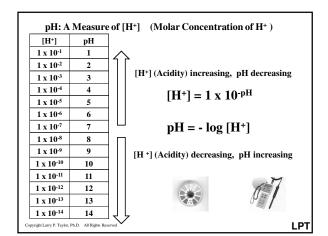
Values commonly range between 0 – 14

 $pH < 7 \implies acidic$ 

pH = 7 → neutral

pH > 7 → basic (alkaline)

Measured using


indicators (pH papers or solutions)

pH meter



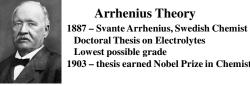


Copyright Larry P. Taylor, Ph.D. All Rights Reserv





## pH Scale


Focus of pH scale is the proton (acidity)

Strong acids: pH < 4 Strong Bases: > pH 11 Weak acids: pH 4-6 Weak Bases: pH 8-11





LPT



## **Arrhenius Theory**

**Doctoral Thesis on Electrolytes** Lowest possible grade

1903 – thesis earned Nobel Prize in Chemistry

Neither water, acids, nor salts conduct Current only flows by ionization

Acids, special case of ionization HA → H+ A-



Copyright Larry P. Taylor, Ph.D. All Rights Reserved



Acid = substance that forms hydrogen ions in water solution

$$HA_{(aq)} \rightarrow H^{+}_{(aq)} + A^{-}_{(aq)}$$
 $H^{+} = proton$ 

But, individual protons do NOT exist in water:

 $\mathrm{H^+} + \mathrm{H_2O} \rightarrow \mathrm{H_3O^+}$  (Hydronium Ion)







Arrhenius Acids form hydronium ions in solution

Committed Larry P. Taylor, Ph.D. All Rights Reserved

LPT

#### **Arrhenius Theory: Bases**

Base = substance that forms hydroxide ions (OH·) in water

$$\begin{split} MOH_{(aq)} & \to \quad M^+_{\;(aq)} + \; OH^-_{\;\;(aq)} \\ NaOH_{\;(aq)} & \to \quad Na^+_{\;\;(aq)} + \; OH^-_{\;\;(aq)} \\ Ca(OH)_{2\;(aq)} & \to Ca^{+2}_{\;\;(aq)} + 2 \; OH^-_{\;\;(aq)} \end{split}$$



Arrhenius Bases form hydroxide ions in solution



 $Hydroxide \ also \ hydrated \ (H_7O_4 \ \dot{})$ 

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

### **Arrhenius Neutralization Reaction**

$$\mathrm{H_{3}O^{+}}_{(\mathrm{aq})} + \mathrm{OH^{-}}_{(\mathrm{aq})} \rightarrow 2 \mathrm{\ H_{2}O}_{(\mathrm{l})}$$

#### **Problems With Arrhenius**

Acidic properties depend upon dissociation in aqueous solutions Fails to predict behavior in non-polar solvents Bases restricted to the OH· ion





Copyright Larry P. Taylor, Ph.D. All Rights Reserved



Problems with Arrhenius Solved in 1923 Johanes Bronsted – Danish Chemist Martin Lowry – English Chemist



Both simultaneously published ... so, name of both on the theory

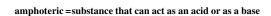
Allows acids & bases in non-aqueous solutions

Allows bases other than hydroxide

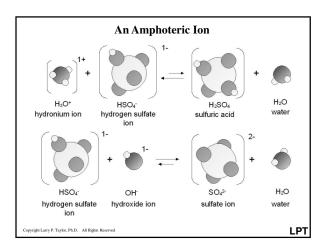
Compound can be either an acid or base dependent on conditions

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT


# Bronsted-Lowry Theory of Acids & Bases $AH + B \xrightarrow{} BH^{+} + A^{-}$

Acid = proton donor Base = proton acceptor (Prime departure from Arrhenius)


Acid-Base reaction = proton transfer

Solvent can be non-aqueous Bases do not have to have OH-

water can act as an acid or a base  $HCl + H_2O \rightarrow H_3O^+ + Cl^-$  (water a base)  $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$  (water an acid)



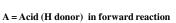
Copyright Larry P. Taylor, Ph.D. All Rights Reserved



## **Bronsted-Lowry Neutralization Reactions**

$$\begin{split} & H_{3}O^{+}{}_{(aq)} + \ OH^{-}{}_{(aq)} \to 2 \ H_{2}O_{\ (l)} \\ & NH_{3} + HCl \ \to \ NH_{4}^{+} + Cl^{-} \end{split}$$

Arrhenius reactions are also Bronsted-Lowry Acid Base Reactions But, non-aqueous Bronsted reactions cannot be Arrhenius




Copyright Larry P. Taylor, Ph.D. All Rights Reserve

LPT

#### **Acid-Base: Conjugate Pairs**

$$AH + B \Rightarrow BH^+ + A^-$$



B = Base (H acceptor) in forward reaction

BH\* = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)



When asked to find these "conjugate" terms "Follow the Protons" cause

Conjugates differ only by a H+

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

#### **Acid-Base: Conjugate Pairs**

$$AH + B \Rightarrow BH^+ + A^-$$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

#### What are the conjugate acid-base pairs:

A = Acid (H donor) in forward reaction

 $B = Base \ (H \ acceptor) \ in \ forward \ reaction$ 

BH+ = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)

$$NO_2$$
 +  $H_2S \leftrightarrow HNO_2 + HS$ 

 $A = Acid = H_2S$ 

 $B = Base = NO_2$ 

BH+ = Conjugate Acid = HNO<sub>2</sub>

A = Conjugate Base = HS



Copyright Larry P. Taylor, Ph.D. All Rights Reserves

ΙP

#### What are the conjugate acid-base pairs:

A = Acid (H donor) in forward reaction

B = Base (H acceptor) in forward reaction

BH+ = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)

$$HC_4H_5O_3 + PO_4^{3-} \leftrightarrow HPO_4^{2-} + C_4H_5O_3^{-}$$

 $A = Acid = HC_4H_5O_3$ 

 $B = Base = PO_4^{3}$ 

BH+ = Conjugate Acid = HPO<sub>4</sub><sup>2</sup>·

A. = Conjugate Base =  $C_4H_5O_3$ .



Copyright Larry P. Taylor, Ph.D. All Rights Reserve

LPT

#### What are the conjugate acid-base pairs:

A = Acid (H donor) in forward reaction

B = Base (H acceptor) in forward reaction

BH+ = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)

$$HSO_4^- + HC_2O_4^- \leftrightarrow SO_4^{2-} + H_2C_2O_4$$

 $A = Acid = HSO_4$ 

 $B = Base = HC_2O_4$ 

BH<sup>+</sup> = Conjugate Acid =  $H_2C_2O_4$ 

 $A^- = \text{Conjugate Base} = \text{SO}_4^{2-}$ 



Copyright Larry P. Taylor, Ph.D. All Rights Reserved

## What are the conjugate acid-base pairs:

A = Acid (H donor) in forward reaction

B = Base (H acceptor) in forward reaction

BH+ = Conjugate Acid (H donor in reverse reaction)

A = Conjugate Base (H acceptor in reverse reaction)

$$HNO_2 + CN^- \leftrightarrow NO_2^- + HCN$$

 $A = Acid = HNO_2$ 

 $B = Base = CN^{-}$ 

 $BH^+$  = Conjugate Acid = HCN

 $A^{-}$  = Conjugate Base =  $NO_2^{-}$ 



Copyright Larry P. Taylor, Ph.D. All Rights Reserves

ΙP

#### Fill in the Blanks

| Acid                            | Conjugate Base                                 |
|---------------------------------|------------------------------------------------|
| HNO <sub>3</sub>                |                                                |
|                                 | Br                                             |
| H <sub>2</sub> O                |                                                |
|                                 | H <sub>2</sub> O                               |
|                                 | HPO <sub>4</sub> <sup>2-</sup>                 |
| HPO <sub>4</sub> <sup>2</sup> - |                                                |
|                                 | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> · |

From any compound:
To make conjugate Acid
Add H<sup>+</sup>
To make conjugate Base:
Subtract H<sup>+</sup>

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

#### Fill in the Blanks

| Acid                             | Conjugate Base                 |
|----------------------------------|--------------------------------|
| HNO <sub>3</sub>                 | NO <sub>3</sub> ·              |
| HBr                              | Br                             |
| H <sub>2</sub> O                 | OH.                            |
| H <sub>3</sub> O <sup>+</sup>    | $H_2O$                         |
| H <sub>2</sub> PO <sub>4</sub> · | HPO <sub>4</sub> <sup>2-</sup> |
| HPO <sub>4</sub> <sup>2</sup> -  | PO <sub>4</sub> <sup>3</sup> - |
| C,H,O,                           | C2H3O2.                        |

From any compound:
To make conjugate Acid
Add H<sup>+</sup>
To make conjugate Base:
Subtract H<sup>+</sup>

opyright Larry P. Taylor, Ph.D. All Rights Reserved

#### **Bronsted-Lowry Theory:**

strong acid = excellent proton donor (readily loses  $H^+$ ) weak acid = poor proton donor (does not lose H+ easily)

strong base = very good proton acceptor (readily gains  $H^{\scriptscriptstyle +}$ ) weak base = poor proton acceptor (does not gain H+ easily) The stronger the attraction for H+, the stronger the base

> "Weak" or "Strong" is about "H+ attraction" Strong Acid has Weak Conjugate Base Weak Acid has Strong Conjugate Base Strong Base has Weak Conjugate Acid Weak Base has Strong Conjugate Acid



LPT

#### Relative Strengths of Acids & Bases

"strong" acid or base: 100  $\,\%$  completely ionized

$$HCl \rightarrow H^+ + Cl^-$$
  
 $HNO_3 \rightarrow H^+ + NO_3^-$ 

"weak" acid or base:  $<100\,\,\%$  ionized, partially ionized





LPT

## pH & pK<sub>a</sub>

pH = negative logarithm of [H+]

 $K_a$  = a measure of acidity based on dissociation:  $pK_a$  = negative logarithm of  $K_a$ 



K<sub>a</sub> = measure of acidity





Lots of [HA] lowers  $K_a$  (acidity)

Example: Acetic Acid

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Auto-ionization (Self-Protolysis) of Water

$$H_2O_{(l)} + H_2O_{(l)} \Longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$$

At 25 °C:

$$[H^+] = 1 \times 10^{-7} M$$

$$[OH^{-}] = 1 \times 10^{-7} M$$



[ ] means Molar (moles / L ) Concentration



Copyright Larry P. Taylor, Ph.D. All Rights Reserved

ΙP

# Ion-Product Constant for Water (K<sub>w</sub>)

 $K_w$  = Product of  $[H_3O^+]$  multiplied by  $[OH^-]$ 

$$[H_3O^+][OH^-] = (1.0 \times 10^{-7}) (1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$$

$$K_w = 1.0 \times 10^{-14}$$



Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LP

 $pH\hbox{:} A\ Measure\ of\ [H^+]\quad (Molar\ Concentration\ of\ H^+\ )$ 

 $[H^+] > [OH^-] \rightarrow acidic solution$ 

 $[OH^-] > [H^+] \rightarrow basic solution$ 

 $[H^+] = [OH^-] \rightarrow neutral solution$ 

Always:  $[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$ 





Copyright Larry P. Taylor, Ph.D. All Rights Reserve

Calculate  $\,[H^+]$  for an aqueous solution at  $25^{\circ} \mathrm{C}$  with a  $[OH^{\text{-}}]$  of 1.0 x 10<sup>-5</sup> M; Is this solution is acidic, neutral, or basic?  $[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$  $[H^+][1.0 \text{ x } 10^{-5}] = K_w = 1.0 \text{ x } 10^{-14}$  $[H^+][1.0 \times 10^{-5}] = 1.0 \times 10^{-14}$  $[H^+] = 1.0 \times 10^{-14}$  $1.0 \times 10^{-5}$  $[H^+] = 1.0 \times 10^{-9}$  $[OH^-] > [H^+] \implies basic solution$ LPT Calculate pH of a solution with  $[H^+]$  of 1.0 x  $10^{-5}$  M.  $pH = -log[H^+]$  $pH = -log (1.0 \times 10^{-5})$ pH = 5.00Number of sig figs in the original number: number of  $\underline{\textit{decimal places}}$  in the number after taking the log Calculate pH of a solution with  $[H^+]$  of 4.8 x  $10^{-3}$  M.  $pH = -log[H^+]$  $pH = -log (4.8 \times 10^{-3})$ pH = 2.32

What is the [OH-] of a solution with a pOH of 7.43?

"p N" means 
$$-\log of [N]$$

 $pOH = -log[OH^-]$ 

 $7.43 = -\log [OH^{-}]$  (2 decimal places)

 $-7.43 = \log [OH^{-}]$ 

 $[OH^{-}] = anti-log - 7.43$ 

 $[OH^{-}] = 3.71535 \times 10^{-8} \implies 3.7 \times 10^{-8} (2 \text{ sig figs})$ 



Calculator function depends on keypad: Anti-log = inverse log = inv =  $10^x$  =  $y^x$ Must try your calculator to validate keystrokes

oyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

# pH Scale



$$[H^+][OH^-] = Kw = 1x10^{-14}$$
  
pH + pOH = 14.00

The pH of a solution is 8.23; what is the pOH?

$$pH + pOH = 14.00$$
  
 $pOH = 14 - pH$ 



pOH = 5.77



I PI

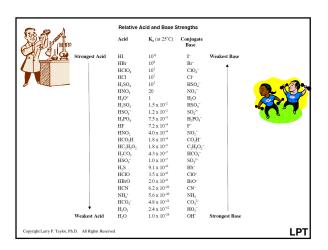
Calculate the pH of a 0.010M solution of HCl.

Strong Acid:  $HCl \longrightarrow H^+ + Cl$ 

Strong Acid  $\rightarrow$  Assume M = [H<sup>+</sup>]

$$[H^+] = 0.010M = 1.0 \text{ x } 10^{-2} \text{ M}$$




 $pH = -log [H^+]$ 

 $pH = -log (1.0 \times 10^{-2})$ 

pH = 2.00



pyright Larry P. Taylor, Ph.D. All Rights Reserved



| So, I gave that base a proton |  |
|-------------------------------|--|
| HCI                           |  |
|                               |  |
|                               |  |
| Bases love protons            |  |
|                               |  |
| LPT                           |  |