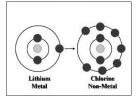
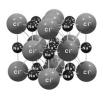


General Bond Properties							
Ionic	Covalent						
Ions (Charged Matrix)	Atoms/Molecules						
Metal + Non-Metal	2 Non-Metals						
Solid	Solid, Liquid, Gas						
Very High (> 200 °C)	Lower (< 200 °C)						
None	May Be Present						
No	May Be						
Solids: Poor Melted: Good Aqueous: Good	Solids: Poor Melted: Poor Aqueous: Poor						
	Ionic Ions (Charged Matrix) Metal + Non-Metal Solid Very High (> 200 °C) None No Solids: Poor Melted: Good						

Are Not Electrolytic, but some Exceptions (acids) are known

Consider Losso B. Toules Bh. D. All Birbs Brown





LPT

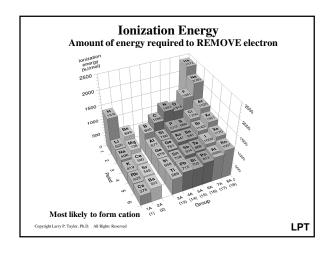
Ionic Interactions

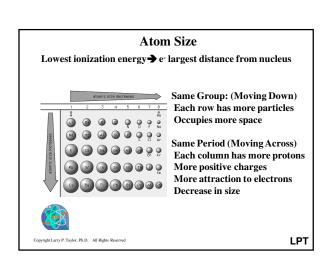
Not a single entity between individual atoms ... Strong electrostatic forces hold ions within crystal matrix

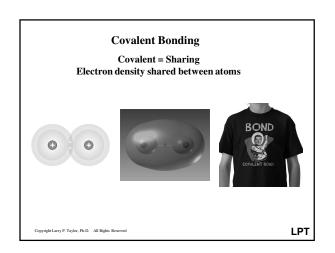
Commonly, Metal Cation & Non-Metal Anion

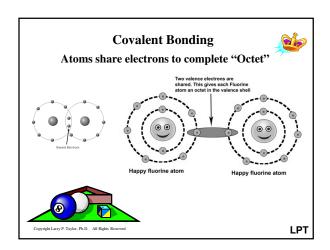
Copyright Larry P. Taylor, Ph.D. All Rights Reserved

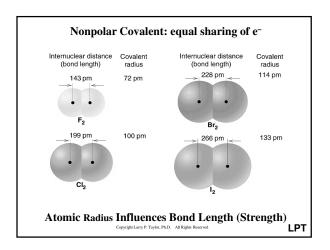
LPT

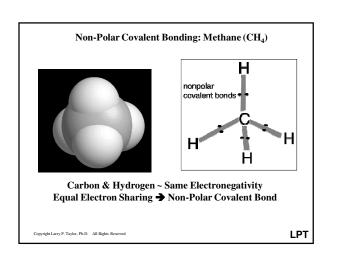

Ionic Interactions

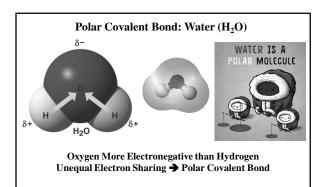

Transfer of electrons from one atom to another to form ions

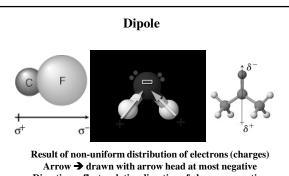



Both atoms have inert (filled outer shells) configuration Cation smaller than neutral atom Anion larger than neutral atom


Copyright Larry P. Taylor, Ph.D. All Rights Reserved

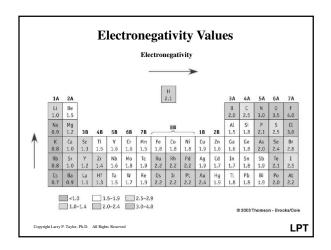


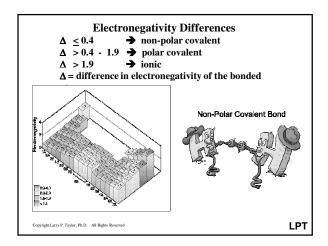




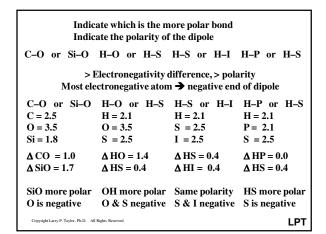
LPT

Direction reflects relative direction of charge separation

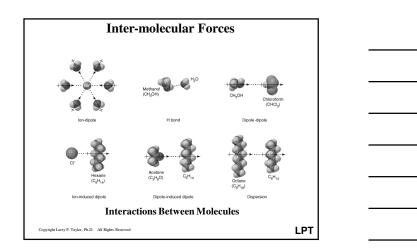

Copyright Larry P. Taylor, Ph.D. All Rights Reserved


LPT

Electronegativity Qualitative Measure of ability to acquire electrons from another atom


4.0 -	1A 2A 1) (2)	3B (3)	(4	3 6	5)	6B (6)	7B (7)	(0)	(9)	(10)	(15	(12	0 (1	A 4	A 5	A 6/	A 7A 6) (17	2
	No. O.	Ca 1.0 Sr 1.0 Ba 0.0 Ra	Sec 1.2 Y 1.2 La 1.1	Ti 1.5 Zr 1.4 Hf 1.5	V 1.6 Nb 1.6 Ta 1.5	Cr 1.6 Mo 1.8 W	Mn 18 19 19 19	Fe 18 Ru 22 Os 22	Co 18 Rh 22 lr 22	Ni 18 Pd 2.2 Pt 2.2	Cu 19 Ag 18 Au 2.4	Zn 1.6 Cd 17 Hg 1.9	Al 1.5 Ga 1.6 In 1.7 Ti 1.8	C 2.5 Si 1.8 Ge 1.0 Sn 1.8 Pb 1.9	P 2.1 As 2.0 Sb 1.9 Bi 91.9	0 3.5 8 2.5 5e 2.4 Te 2.1 Po 2.0	08 B2 - 2 42	
			H	Ce 1.1 Th 1.3	Pr 1.1 Pa 1.5	Nd 1.1 U 1.7	Pm 1.2 Np 1.3	8m 12 Pu 13	Eu 1.1 Am 1.3	Gd 1.2 Cm 1.3	Tb 12 Bk 13	Dy 1.2 Cf 1.3	Ho 1.2 Es 1.3	Er 1.2 Fm 1.3	Tm 1.2 Md 1.3	Yb I		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Applies only to single, isolated atom Measured in Pauling Units



Use Tabl	e of Electronegativi	ties to determine bonds type	•				
H–F F = 4 <u>H = 2</u>	.0	Cl-F F = 4.0 Cl = 3.0 1.0 Polar-Covalent					
Na-F F = <u>Na</u> =	4.0	Ca-F $F = 4.0$ $Ca = 0.7$ 3.3 Ionic					
	$\Delta \le 0.4 \implies \text{non-polar covalent}$ $\Delta 0.4 - 1.9 \implies \text{polar covalent}$ $\Delta > 1.9 \implies \text{ionic}$						
Copyright Larry P. Taylor, Ph.D	All Rights Reserved		LPT				

Electron Affinity Quantitative Measure of Energy released when an electron is acquired Increases Electron Affinity Increases Increases Electron Affinity Increases Increases Electron Affinity Increases Electron Af

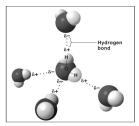
Van der Waals 0.01 - 10
Hydrogen bond 10 - 40

Chemical Bond Ionic 100 - 1000
Covalent 100 - 1000

ght Larry P. Taylor, Ph.D. All Rights Reserved

Dipole-Dipole Interactions

Molecules with permanent Dipole Dipoles align ... cohesive attraction



Alters physical properties
Typically increases melting/boiling point
energy needed to overcome multiple interactions
Water NH₃

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Hydrogen Bonds A Biologically important dipole-dipole interaction

Low Energy (weak) Individually weak, But, significant in quantity Pairs

Pairs
H & Electronegative Atom
(especially N & O; F)

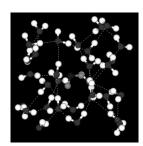
A strong dipole-dipole interaction

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Hydrogen Bonds

Hydrogen Bonds define molecular shapes

Low energy of each bond allows DNA replication Also makes the molecule susceptible to change The fragility of DNA allows for: mutation / evolution / cancer



HOMERSAPIEN

DNA Double Helix

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Hydrogen Bonds - Water

Boiling Point (°C)

 $H_2O = 100$

 $H_2S = -60.7$

 $H_2S = -42$ $H_2Se = -42$ $H_2Te = -2$ $H_2Po = 37$

If Mass Controlled, H₂O should boil At ~ -100 °C

VI

 $Energy\,needed\,to\,overcome\,H\text{-}bonded\,network\,is\,considerable$

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

Water (H₂O)

If Water Boiled at - 100 °C, Earth would have no liquid water And Life as we know it, would not exist

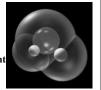
Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Water & Dry Ice

Water: Ice H-Bonded Network Melting Point 0 °C "Dry Ice" (CO₂) No Bonding Network Sublimes (-78.5 °C)

H-bonded network requires energy to disrupt

Copyright Larry P. Taylor, Ph.D. All Rights Reserved


LPT

London Dispersion Forces (Van der Waals's)

Weakest interaction (inversely proportional to r⁶ between atoms) Temporary; when adjacent atom electrons create dipole All atoms; more prevalent in heavier/larger Stronger when atoms easily polarized At 3 Angstrom, ~ 1 kcal/mole

Van der Waal Radii Volume of space where significant

Biologically (especially in lipids) significant

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

London Dispersion Forces in Fats

"Saturated" Fats are mostly linear molecules

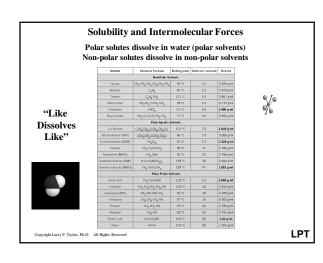
Site of Unsaturation (a double bond) Puts a "kink" in the otherwise, linear chain

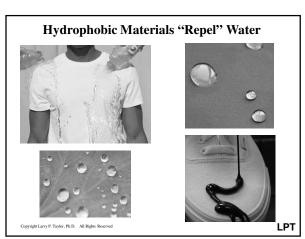
"Unsaturated" Fats are bent molecules

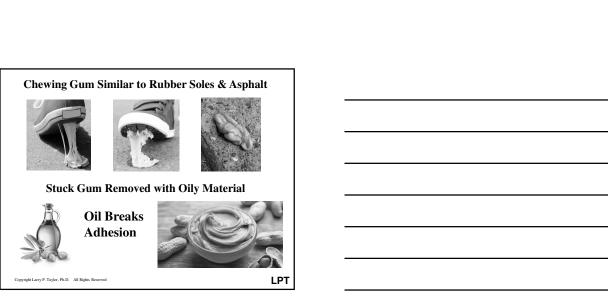
Saturated fats - linear molecules bundle together this takes a lot of energy to undo (melt) → solids Unsaturated fats - "kinks" prevent bundling → liquids

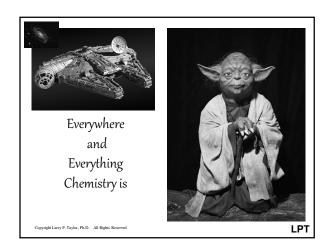
Copyright Larry P. Taylor, Ph.D. All Rights Reserved

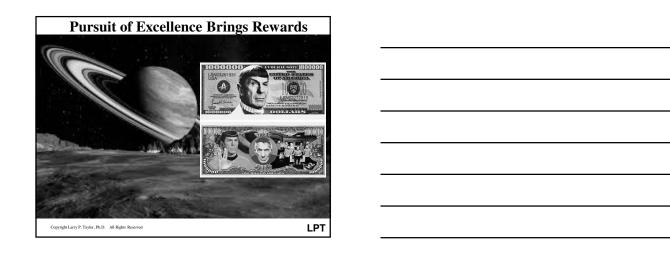
Van der Waal Radii Approximates Molecular Influence Used to understand molecular architecture & how molecules intera LPT Physical Properties & Intermolecular Forces Control Physical properties (State of Matter) Melting & Boiling points Result of progressive elimination of intermolecular forces > intermolecular forces, > energy required to melt/boil **Boiling Point** Group IV A Hydrides If only dispersion forces present (no H-bonding), the more mass present (higher Z), > boiling point LPT Physical Properties & Intermolecular Forces Control Physical properties (State of Matter) Melting & Boiling points ${\bf Result\ of\ progressive\ elimination\ of\ intermolecular\ forces}$ > intermolecular forces > energy required to melt/boil boiling point, °C


LPT


-100


Copyright Larry P. Taylor, Ph.D. All Rights Reserved


2
estimated bp of H₂O in absence
of hydrogen bonding


If H-bonding present, H bonded b.p. higher & off-line

