

Nuclear Chemistry

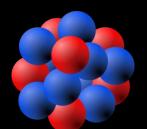
Nuclear Chemistry

Nuclear chemistry: study of changes in the atomic nucleus

Recall:

Z: Atomic Number; number of protons in nucleus

A: Atomic Mass number; sum of protons and neutrons in nucleus

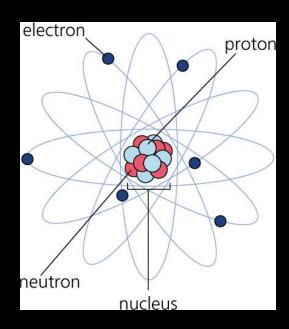

Isotopes: atoms with same Z, but different A

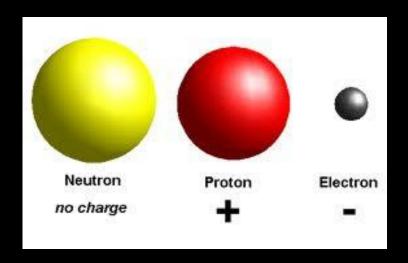
Nuclide: a single atom type

Nuclide Symbol: ${}_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X}$ where $\mathbf{X} = \mathbf{symbol}$ of the element

Nuclide Name: Element - A (Example: ${}_{6}^{14}C = Carbon-14$)

Nucleon: collective name for protons & neutrons




Proton: positive charge

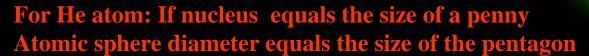
Neutron: no charge

Primary Subatomic Particles

Particle	Location (Nucleus)	Charge	Mass (g)	Mass (amu)	
Neutron (n ⁰)	Inside	0	1.675 x 10 ⁻²⁴	1.00867	(~1)
Proton (p ⁺)	Inside	+1	1.673 x 10 ⁻²⁴	1.00728	(~ 1)
Electron (e ⁻)	Outside	-1	9.11 x 10 ⁻²⁸	0.000549	(~0)

Mass Order: n > p >> e

The Nucleus


Most mass concentrated in a small, dense core (the nucleus)

Positively charged

Nucleus Radius: ~ 10⁻¹⁵ m

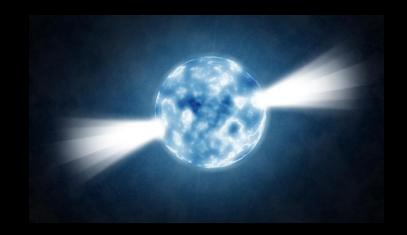
Atomic Radius: ~ 10⁻¹⁰ m

Atomic Density: $\sim 1.8 \times 10^{14} \text{ g/cm}^3$

Density of Neutron Star

Supernova collapse creates neutron star (most dense stars known)

What is the density of the neutron star:


Mass: 1.99 x 10³⁰ kg

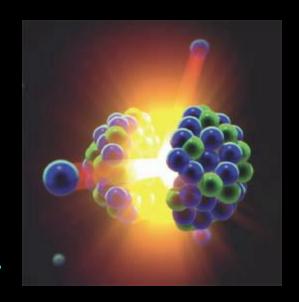
Diameter: 26 km

$$D = 1.99 \times 10^{30} \text{ kg}$$

$$4/3 \pi (26 / 2 \text{ km})^3$$

$$D = 5.2 \times 10^{17} \text{ kg/m}^3$$

What is the density of a uranium - 235 nucleus:


Mass: 235 amu (1.66 x 10⁻²⁷ kg / amu)

Radius: $7.5 \times 10^{-15} \text{ m}$

D =
$$\frac{235 \text{ amu } (1.66 \text{ x } 10^{-27} \text{ kg / amu})}{4/3 \pi (7.5 \text{ x } 10^{-15} \text{m})^3}$$

$$D = 2.2 \times 10^{17} \text{ kg/m}^3$$

Nucleus is about 2 x density of neutron star

Strong Nuclear Force

Holds strongly repulsive positive charges (protons) together Only relevant at extremely short (nuclear) distances

Theoretical mass of the Helium - 4 Atom:

Total mass: sum of mass of 2 protons, 2 neutrons and 2 electrons

Total mass: $(2 \times 1.0072 \text{ amu}) + (2 \times 1.0087 \text{ amu}) + (2 \times 0.00055 \text{ amu})$

Total mass: 4.0331 amu

Value of Helium – 4 atom by mass spectroscopy

4.0026 amu

Difference: 4.0331 amu - 4.0026 amu = 0.0305 amu

Mass Defect:

Mass loss represents conversion to energy This energy holds nucleus together

Nuclear Binding Energy (of He - 4)

Mass to Energy conversion defined by Einstein's $E = mc^2$

To use energy term of Joules (1 $J = 1 \text{ kg m}^2 / \text{s}^2$), need to express mass in kg:

$$\begin{array}{c} 0.0305 \text{ g/mol x 1 kg / 1000 g} = 3.05 \text{ x } 10^{-5} \text{ kg / mol} \\ E = mc^2 \text{ (where c} = 2.998 \text{ x } 10^8 \text{ m/s)} \\ E = \underline{3.05 \text{ x } 10^{-5} \text{ kg}} \text{ x } (\underline{2.998 \text{ x } 10^8 \text{ m}})^2 = 2.74 \text{ x } 10^{12} \text{ kg m}^2 \text{ s}^{-2} \text{ mol}^{-1} \\ & \text{mol} & \text{s} \end{array}$$

 $E = 2.74 \times 10^{12} \text{ J mol}^{-1}$

Molar Binding Energy:

$$E = 2.74 \times 10^{12} \text{ J mol}^{-1} \times \frac{1}{6.02 \times 10^{23} \text{ nuclei}} = 4.55 \times 10^{-12} \text{ J}$$

Energy in terms of electron volts:

$$E = 4.55 \times 10^{-12} J \times \frac{1}{1.602 \times 10^{-19} J} = 2.84 \times 10^7 \text{ eV} \implies 28.4 \text{ MeV}$$

Problem: Binding Energy (MeV) of F - 19

Theoretical mass of the Fluorine-19Atom:

Total mass: sum of mass of 9 protons, 10 neutrons and 9 electrons

Total mass: $(9 \times 1.0072 \text{ amu}) + (10 \times 1.0087 \text{ amu}) + (9 \times 0.00055 \text{ amu})$

Total mass: 9.0648 amu + 10.087 amu + 0.0050 amu (only allowed 2 sig figs here)

Total mass: 19. 157 amu

Mass spectroscopy value of fluorine – 19 atom:

18.9984 amu

Difference: 19.157 amu - 18.9984 amu = 0.163 amu

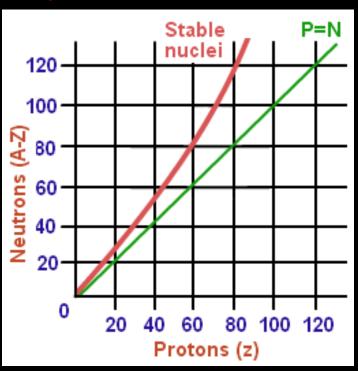
Energy Equivalent in Joules:

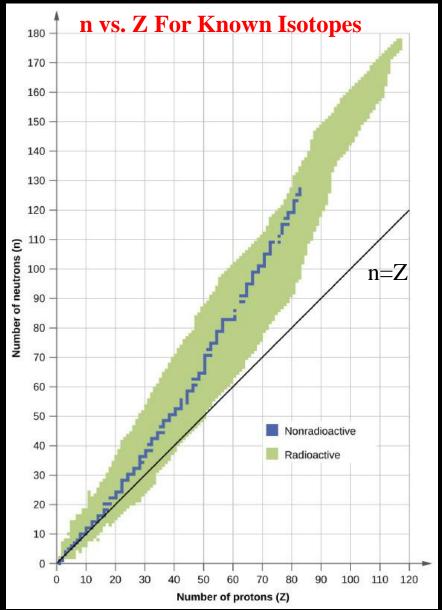
$$E = \underbrace{1.63 \times 10^{-4} \text{ kg}}_{\text{mol}} \times (\underbrace{2.998 \times 10^{8} \text{ m}}_{\text{s}})^{2} = 1.47 \times 10^{13} \text{ kg m}^{2} \text{ s}^{-2} \text{ mol}^{-1} = 1.47 \times 10^{13} \text{ J mol}^{-1}$$

Molar Energy Equivalent:

$$E = 1.47 \times 10^{13} \text{ J mol}^{-1} \times \frac{1}{6.02 \times 10^{23}} = 2.43 \times 10^{-11} \text{ J}$$

Energy in electron volts:


$$E = 2.43 \times 10^{-11} \text{ J} \times \frac{1}{1.602 \times 10^{-19} \text{ J}} = 1.51 \times 10^8 \text{ eV} \implies 151 \text{ MeV}$$


Nuclear Stability

Nucleus is stable: does not change (transform) without outside energy ~ 250 nuclei are stable ~ 3100 nuclei known

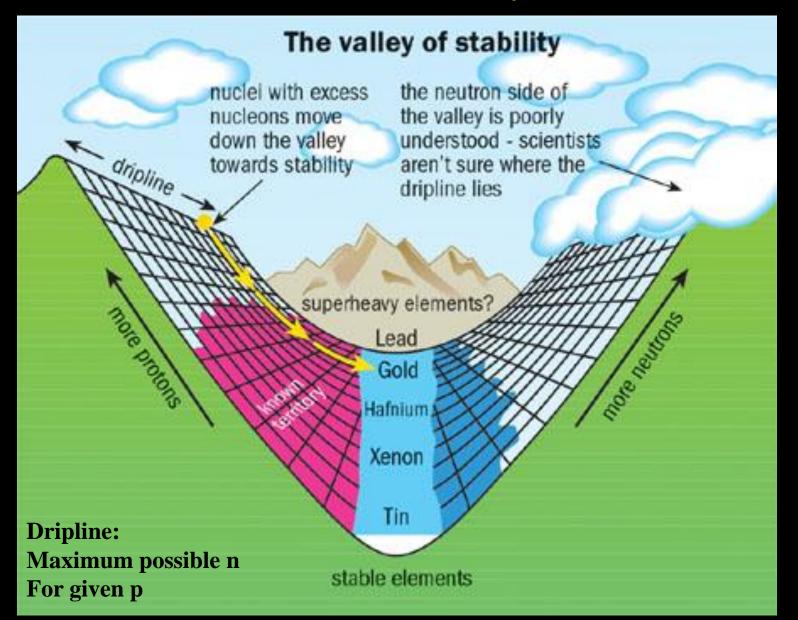
Nucleus is unstable: changes composition by emitting nuclear particles radioactivity: emission of particles to move towards a more stable nucleus radioactive: an atom that will spontaneously emit nuclear particles radioactive decay: emission of nuclear particle radioisotope: nucleus that spontaneous decays

Larger Z nuclei have more:
protons
proton repulsions
neutrons to overcome electrostatics

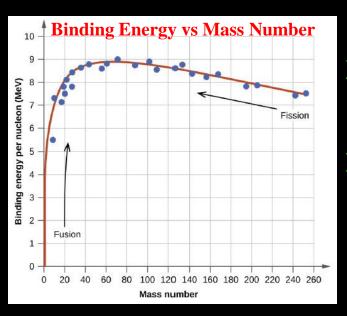
Nuclear Stability All nuclei with Z > 83 are unstable

Nuclei likely to be stable:

Even # n Even # p


Even # both

"Magic Numbers" (protons or neutrons) (2, 8, 20, 28, 50, 80, 126) Nucleons stable against nuclear decay


"Double Magic"
Magic number of both n and Z

Number of Stable Isotopes	Proton Number	Neutron Number
157	even	even
53	even	odd
50	odd	even
5	odd	odd

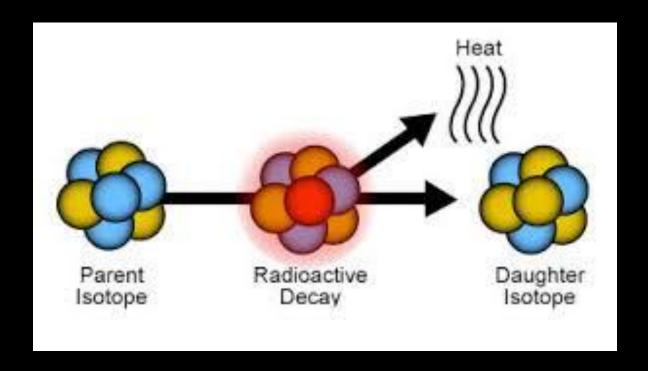
Nuclear Stability

Nucleon Binding Energy

Nucleon Binding Energy = Nuclear Binding Energy # Nucleons

For ⁴₂He: Nuclear Binding Energy of 28.4 MeV

28.4 MeV = **7.10 MeV 4** nucleons


Nucleon Binding Energy greatest about mass number 56 Stars do not create elements (Fusion) beyond Iron

For Fe 56: Nucleon Binding Energy: 8.820 MeV ~ 25% larger than He-4

Decay: Radioisotopes move towards a more stable nucleus

Emission of material from nucleus

Changes nucleus

Heat from radioactive decay: adds heat to earth's core

Nuclear Reactions

Nuclear reaction represents the decay process of nuclear rearrangement Nuclear reaction conservation laws:

> sum of mass numbers for reactants and products identical sum of charges for reactants and products identical

Radioactive decay of polonium-210 can be summarized by the following:

What is element X? Pb What is element Y? He
$$amass = 4$$
 anumber = 2

The radioactive particle (He nucleus without electrons): α particle All of the Helium found on earth comes from radioactive decay

Historical Nuclear Reactions

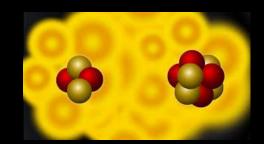
First naturally occurring radioisotope (1898) Marie & Pierre Curie:

$$^{212}_{84}$$
Po $\rightarrow ^{208}_{82}$ Pb $+ ^{4}_{2}\alpha$

First artificial nuclide prepared (1919) Ernst Rutherford:

$$^{14}_{7}N + ^{4}_{2}\alpha \rightarrow ^{17}_{8}O + ^{1}_{1}H (^{1}_{1}H = proton)$$

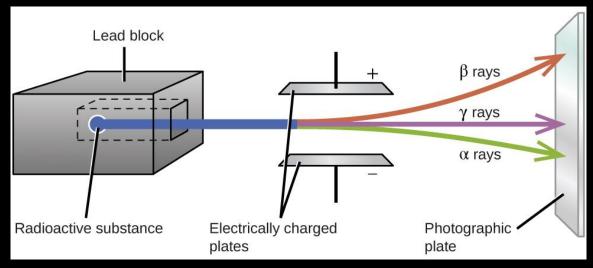
Neutron discovered (1932) by James Chadwick

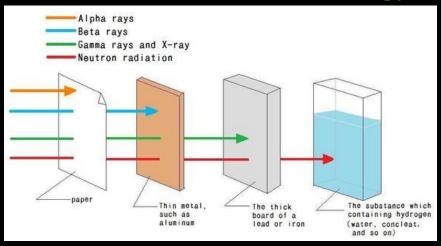

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\alpha \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$

First artificial element (1937) Technetium:

$$_{1}^{2}H + _{42}Mo \rightarrow 2 _{0}^{1}n + _{43}^{97}Tc$$

First controlled sustained chain reaction (1942) at U of Chicago



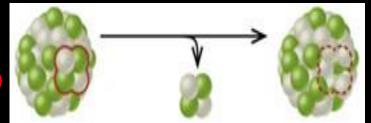

Name	Symbol(s)	Representation	Description
Alpha particle	⁴ ₂ He or ⁴ ₂ α	83	(High-energy) helium nuclei consisting of two protons and two neutrons
Beta particle	0e or _0β	0	(High-energy) electrons
Positron	0 e or 0β	0	Particles with the same mass as an electron but with 1 unit of positive charge
Proton	1H or 1p	0	Nuclei of hydrogen atoms
Neutron	10n	•	Particles with a mass approximately equal to that of a proton but with no charge
Gamma ray	γ	~~~~~~γ	Very high-energy electromagnetic radiation

Types of Radioactive Decay

Rutherford's Determination of radioactive charge

Relative Penetration Energy

Types of Radioactive Decay

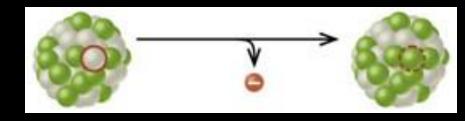

Alpha Particle

Parent nucleus: Emits 2 protons & 2 neutrons (He nucleus)

Daughter nucleus: A -4; Z -2

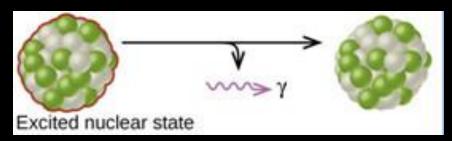
has higher n:p ratio than parent

Typically from heavier nuclei (A > 200; \mathbb{Z} > 83)


Beta Particle

Parent nucleus: Emits electron

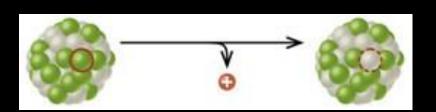
Daughter nucleus: A unchanged; Z +1


has lower n:p ratio than parent

Typically from heavier nuclei (A > 200; Z > 83)

Gamma Emission

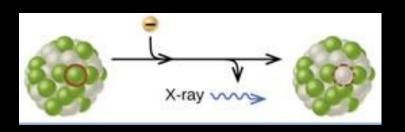
Parent nucleus: emits high energy photon No effect on either A or Z

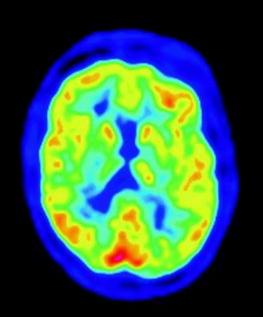

Types of Radioactive Decay

Positron Emission

Parent Nucleus: emits positron

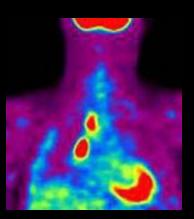
low n:p ratio

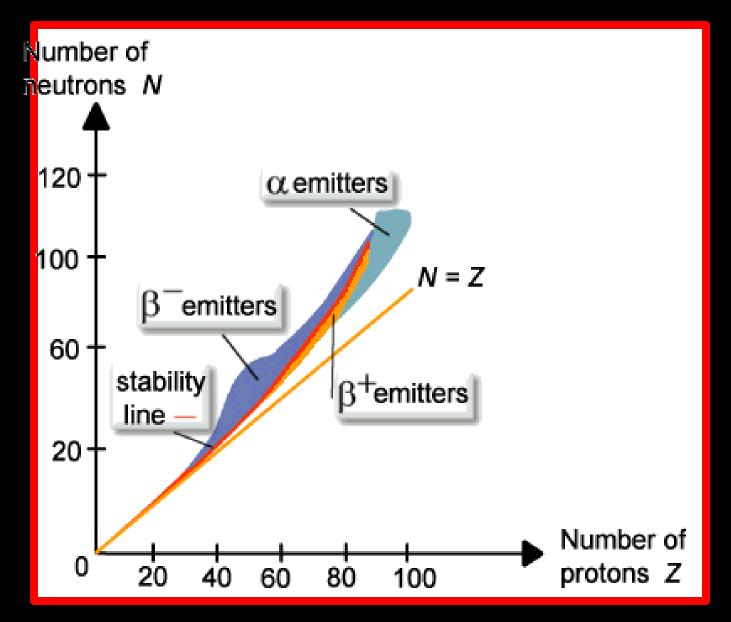

Daughter Nucleus: closer to stability band


Electron Capture

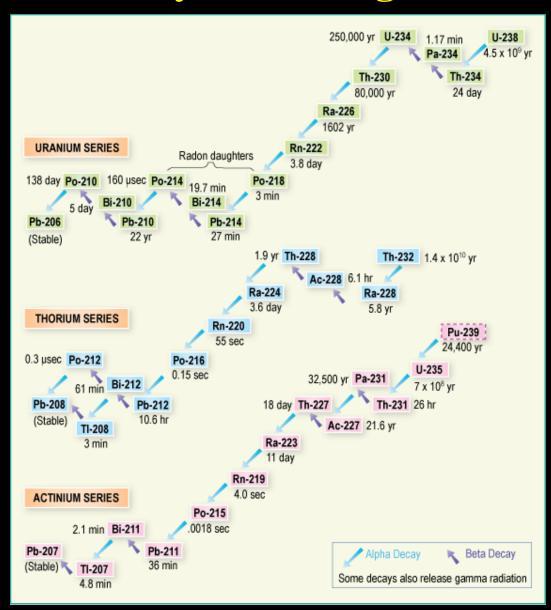
Parent Nucleus: captures inner shell electron

Daughter: A unchanged; Z -1


Positron Emission Tomography

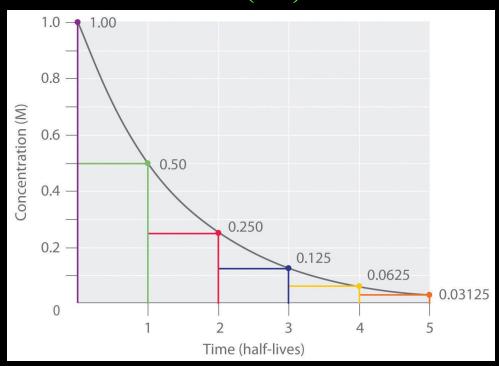

Radioactive F-18 incorporated into glucose
Radioactive decay (gamma radiation) detected
Used to study brain chemistry
highlights increased metabolism
Used to spot cancerous growth

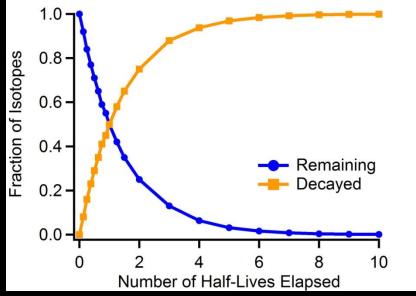




Туре	Nuc	lear equation	Representation		Change in mass/atomic numbers
Alpha decay	ΔX	⁴ ₂ He + ^{A-4} _{Z-2} Y	v e	*	A: decrease by 4 Z: decrease by 2
Beta decay	ΔX	$_{-1}^{0}e + _{Z+1}^{A}Y$	V ·	*	A: unchanged Z: increase by 1
Gamma decay	Δ×	%γ + ÅΥ	V γ Excited nuclear state	*	A: unchanged Z: unchanged
Positron emission	Αχ	0e + Y-1Y	V •	*	A: unchanged Z: decrease by 1
Electron capture	Δ×	0 -1e + Y-1 Y	X-ray V	*	A: unchanged Z: decrease by 1

Naturally Occurring Radioactive Decay Series


Chains of successive decays


Named for Parent Isotope

All decay to stable lead

Radioactive Half-Lives

Radioactive decay follows first order kinetics Half-time ($t^{1/2}$): time for one-half of sample to decay

N = number of atomsn = isotope decay constantt = time

$$N_{t} = N_{0} e^{-kt}$$

$$t = -1/2 \ln (\underline{N}_{t})$$

$$N_{0}$$

Radioactive Half-Lives

Cobalt -60 decays with a half-life of 5.27 years to produce Ni- 60. The decay (rate) constant:

$$\lambda = \ln 2 = 0.693 = 0.132 \text{ y}^{-1}$$
 $t_{1/2} = 5.27 \text{ y}$

Calculate amount remaining after 15 years:

$$N_0^t = e^{-\lambda t} = e^{-(0.132y)(15.0y)} = 0.138 \rightarrow 13.8 \%$$

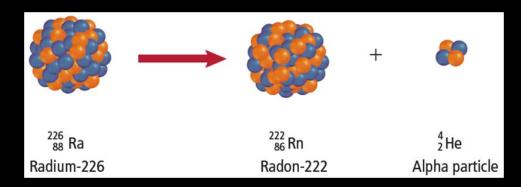
How long to decay to 2 % of the original sample

$$t = -\frac{1}{\lambda} \ln(N_t) = -(1 / 0.132 \text{ y}^{-1}) \ln (0.0200 N_0/N_0)$$

 λN_0

$$t = 29.6 y$$

Radioactive Half-Life Problem


Radon-222 has a half-life of 3.823 days. How long will it take a sample of radon-222 with a mass of 0.750 g to decay to 0.100 g of the original radon-333

Fraction Remaining:

0.100 / 0.750 = 0.1333

Determine number of half-times:

$$(1/2)^n = 0.1333$$

 $n \log (0.5) = \log (0.1333)$
 $n (-0.301) = -0.876$
 $n = 2.91$

Determine time elapsed:

2.91 half-lives
$$x = 3.823 \text{ days} = 11.1 \text{ days}$$
 half-live

Medically Important Radioactive Half-Lives

Type ^[1]	Decay Mode	Half-Life	Uses
F-18	β ⁺ decay	110. minutes	PET scans
Co-60	β decay, γ decay	5.27 years	cancer treatment
Tc-99m	γ decay	8.01 hours	scans of brain, lung, heart, bone
I-131	β decay	8.02 days	thyroid scans and treatment
TI-201	electron capture	73 hours	heart and arteries scans; cardiac stress tests

Radioisotopes in the News

Xe-129 found in Mars atmosphere Implies ancient nuclear explosion

He-3 found on the moon Potential fusion energy source

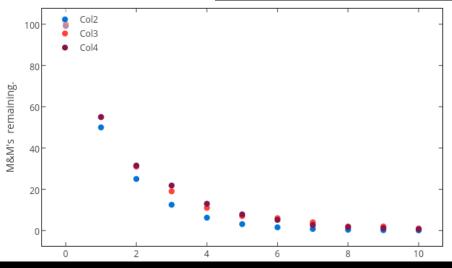
Sr-90 found in atmosphere Indicates nuclear processes Health concern since animals incorporate Sr for Ca

Co-60 gamma ray source Used in radiation therapy to kill cancer cells

Half-Life Demo

EXPERIMENT

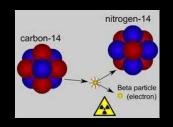
The following experiment is designed to simulate a natural occurrence.

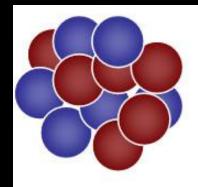

I. Data Collection:

- a. Quality control: Check each m&m to be sure that it has an "m" on one side only – eat any that don't! You may also consume any m&m's that are not whole.
- Count the m&m's in the cup and record as the beginning number in the table at the right.
- c. Shake the cup and carefully dump the m&m's on the napkin on your desktop. Remove those candies that landed with the "m" showing and eat them! Count the ones remaining and record this number in the chart at the right. Place these candies back into the cup.
- d. Repeat step c until no m&m's are left.
- e. Graph the data from the table below label and use an appropriate scale.

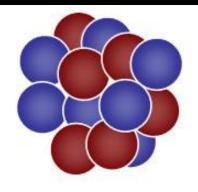
The state of the s	H W		III III
in C	u	m	A E
Ш	10 th	To a	S E

Toss	# remaining
Beginning	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

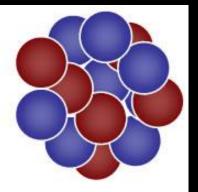




Radiometric Dating

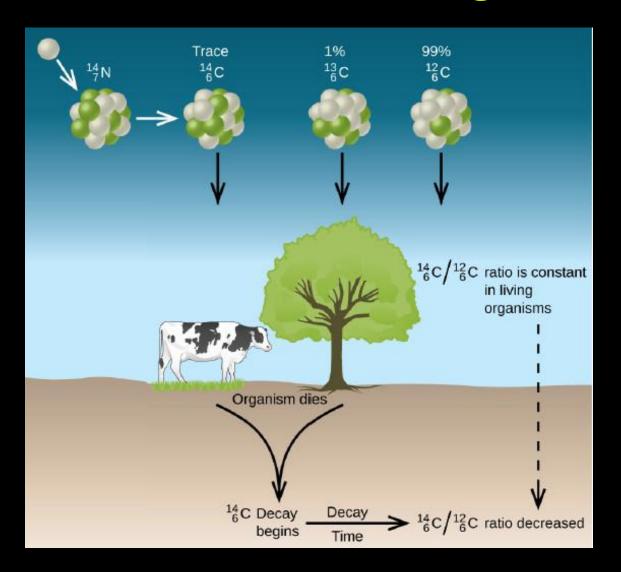

Radioactive decay has become a powerful dating technique

Carbon-14: useful for former living materials reliable to 30,000 years ago limit 50,000 years ago



carbon-12 98.9% 6 protons 6 neutrons

carbon-13 1.1% 6 protons 7 neutrons



carbon-14<0.1%6 protons8 neutrons

Radiometric Dating: Carbon-14

Half-life C-14: 5730 years

Six half-lives: 34,380 years

During Life:
C-14 Constant
C-12

After death As C-14 decays

C-14 Decreases **C-12**

Ratio ~ Age

Increasing CO₂ levels may affect C-14 data; validate with other methods

Radiometric Dating: Carbon-14

A piece of the dead sea scrolls has an activity of 10.8 disintegrations per gram of C-14. If initial activity was 13.6 disintegrations per minute, estimate scroll age.

Determine λ:

 $\lambda = \ln 2 / t_{1/2}$

 $\lambda = 0.693 / 5730 \text{ y}$

 $\lambda = 1.21 \times 10^{-4} \text{ y}^{-1}$

Estimate age:

 $t = -1/\lambda \ln (rate_t / rate_0)$

 $t = -(1/1.21 \times 10^{-4} \text{ y}^{-1}) \ln (10.8 \text{ dis/min/g C} / 13.6 \text{ dis/min/g C})$

 $t = 1905 \text{ years} \rightarrow 1910 \text{ years}$

Radiometric Dating:

Seeds from Egyptian tombs have a C-14 disintegration rate of 9.07 dis/min/g C. Determine the age of the seeds

Determine λ:

 $\lambda = \ln 2 / t_{1/2}$

 $\lambda = 0.693 / 5730 \text{ y}$

 $\lambda = 1.21 \times 10^{-4} \text{ y}^{-1}$

Estimate age:

 $t = -1/\lambda \ln (rate_t / rate_0)$

 $t = -(1/1.21 \times 10^{-4} \text{ y}^{-1}) \ln (9.07 \text{ dis/min/g C} / 13.6 \text{ dis/min/g C})$

t = 3347 years → 3350 years

Radiometric Dating: Other nucleotides Isotope selected depends on date range needed

ISOTOPES		HALF-LI FE	EFFECTIVE	MINERALS AND OTHER	
PARENT	DAUGHTER	OF PARENT (YEARS)	DATING RANGE (YEARS)	MATERIALS THAT CAN BE DATED	
Uranium-238	Lead-206	4.5 billion	10 million- 4.6 billion	Zircon Uraninite	
Potassium-40	Argon-40	1.3 billion	50,000 - 4.6 billion	Muscovite Biotite Hornblende Whole volcanic rock	
Rubidium-87	Strontium-87	47 billion	10 million - 4.6 billion	Muscovite Biotite Potassium feldspar Whole metamorphic or igneous rock	
Carbon-14	Nitrogen-14	5730	100 -70,000	Wood, charcoal, peat Bone and tissue Shell and other calcium carbonate Groundwater, ocean water, and glacier ice containing dissolved carbon dioxide	

Radiometric Dating: Rocks Ratio of parent / daughter used to estimate age

Rock sample contains $9.58 \times 10^{-5} \, g$ of U-235 and $2.51 \times 10^{-5} \, g$ of Pb-206. Determine the age of the rock. (Assume all Pb-206 produced by decay of U-238.)

Amount of U-238 currently in the rock:

$$9.58 \times 10^{-5} \text{ g U} \times 1 \mod \text{U} = 4.03 \times 10^{-7} \text{ mole U-238}$$

 238 g U

Amount of Pb produced converted to moles uranium:

$$2.51 \times 10^{-5} \text{ g Pb} \times 1 \mod \text{Pb} \times 1 \mod \text{U-238} = 1.22 \times 10^{-7} \mod \text{U-238} \times 1 \mod \text{Pb} \times 1 \mod \text{Pb}$$

Total U-238 present in original sample:

$$(4.03 + 1.22) \times 10^{-7} \text{ mole} = 5.25 \times 10^{-7} \text{ mole U-} 238$$

Amount of time passed for this decay process:

$$\begin{split} t = & - 1/\lambda \ ln \ (N_{t/}N_0) \\ t = & \ (1/1.54 \ x \ 10^{-10} \ y^{-1}) \ ln \ \ (\underline{4.03 \ x \ 10^{-7} \ mol \ U}) \\ & \ \ (5.25 \ x \ 10^{-7} \ mol \ U) \end{split}$$

$$t = 1.7 \times 10^9 \text{ years}$$

Need Lamda:

$$\lambda = \ln 2 / 4.5 \times 10^9 \text{ y}$$

 $\lambda = 1.54 \times 10^{-10} \text{ y}^{-1}$

Problem: Radiometric Dating of Rocks

Rock sample contains 6.14 x 10^{-4} g of Rb-87 and 3.51x 10^{-5} g of Sr-87. Determine the age of the rock. (Half-life of Rb-87 = 4.7×10^{10} y.)

Amount of Rb-87 currently in the rock:

$$6.14 \times 10^{-4} \text{ g Rb} \times 1 \mod \text{Rb} = 7.06 \times 10^{-6} \text{ mole Rb}$$

87 g Rb

Amount of Sr produced converted to moles Rb:

$$3.51 \times 10^{-5} \text{ g Sr } \times 1 \quad \text{mol Sr} \times 1 \quad \text{mol Rb} = 4.03 \times 10^{-7} \text{ mole Rb}$$

$$87 \text{ g Sr} \quad 1 \text{ mol Sr}$$

Total Rb present in original sample:

$$7.06 \times 10^{-6} + 4.03 \times 10^{-7} \text{ mole} = 7.46 \times 10^{-6} \text{ mole Rb}$$

Amount of time passed for this decay process:

$$\begin{array}{ll} t = \text{-} \ 1/\lambda \ \ln \ (N_{t/}N_0) \\ t = \text{-} \ (1/1.47 \ x \ 10^{\text{-}11} \ y^{\text{-}1}) \ \ln \ \ (\underline{7.06 \ x \ 10^{\text{-}6} \ mol \ Rb}) \\ (7.46 \ x \ 10^{\text{-}6} \ mol \ Rb) \end{array} \qquad \begin{array}{ll} \text{Need Lamda:} \\ \lambda = \ln \ 2 \ / \ 4.7 \ x \ 10^{\text{-}10} \ y \\ \lambda = 1.47 \ x \ 10^{\text{-}11} \ y^{\text{-}1} \end{array}$$

$$t = 3.7 \times 10^9 \text{ years}$$

Transmutation:

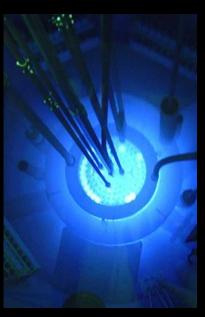
Changing one nucleotide to another via nuclear reactions

Requires enormous kinetic energy:

Originally called "atom smashers"
Now: particle accelerators or colliders

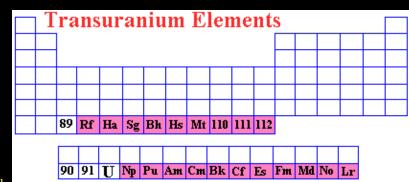


Requires enormous kinetic energy Must overcome forces holding nucleus together

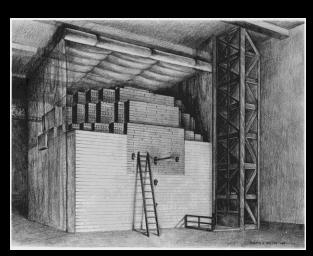


All elements beyond Uranium are man-made First man-made element: Neptunium (Neptune follows Uranus)

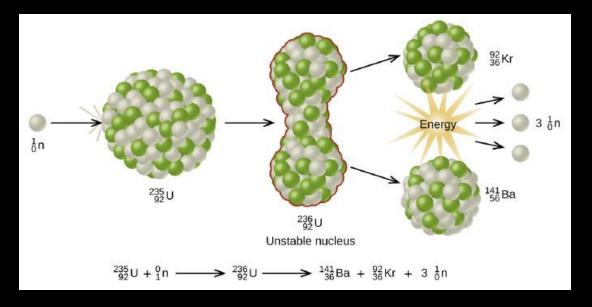
Most Plutonium created in "breeder reactors" using U-238



Name	Symbol	Atomic Number	Reaction
americium	Am	95	$^{239}_{94}$ Pu + $^{1}_{0}$ n $\longrightarrow ^{240}_{95}$ Am + $^{0}_{-1}$ e
curium	Cm	96	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\longrightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n
californium	Cf	98	$^{242}_{96}$ Cm + $^{4}_{2}$ He $\longrightarrow ^{243}_{97}$ Bk + 2^{1}_{0} n
einsteinium	Es	99	$^{238}_{92}\text{U} + 15^{1}_{0}\text{n} \longrightarrow ^{253}_{99}\text{Es} + 7^{0}_{-1}\text{e}$
mendelevium	Md	101	$^{253}_{99}\text{Es} + {}^{4}_{2}\text{He} \longrightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$
nobelium	No	102	$^{246}_{96}$ Cm + $^{12}_{6}$ C $\longrightarrow ^{254}_{102}$ No + $^{11}_{0}$ n
rutherfordium	Rf	104	$^{249}_{98}\text{Cf} + ^{12}_{6}\text{C} \longrightarrow ^{257}_{104}\text{Rf} + 4^{1}_{0}\text{n}$
seaborgium	Sg	106	$^{82}_{98}\text{Cf} + ^{18}_{8}\text{O} \longrightarrow ^{263}_{106}\text{Sg} + 4^{1}_{0}\text{n}$
meitnerium	Mt	107	$^{209}_{83} \text{Bi} + ^{58}_{26} \text{Fe} \longrightarrow ^{266}_{109} \text{Mt} + ^{1}_{0} \text{n}$


Nuclear Fission

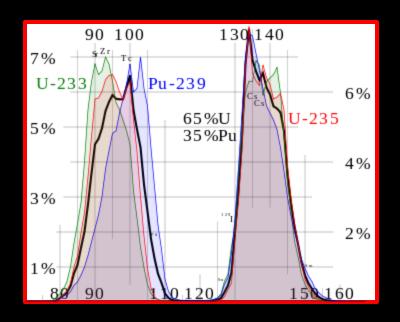
Fission (splitting):


Heavy element nuclei with small nuclear binding energy spontaneously decompose to nuclei with smaller binding energy

Typically, a random, low probability event

First artificial fission (Hahn, 1939)

12/2/1942

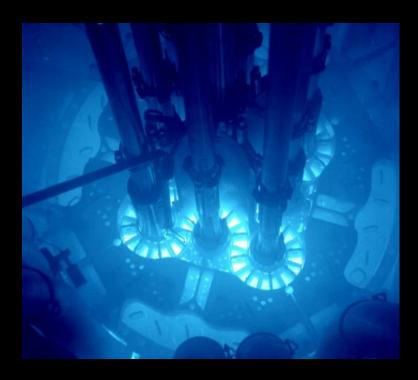


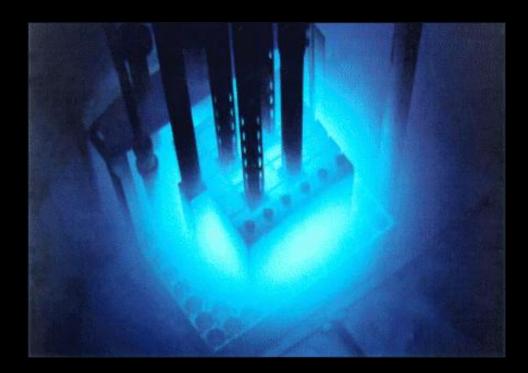
Process releases large amount of energy 1 kg U-235: $2.5 \times 10^6 \text{ more energy than } 1 \text{ kg coal}$

OTTO HAHN * NOBELPREIS CHEMIE 1944

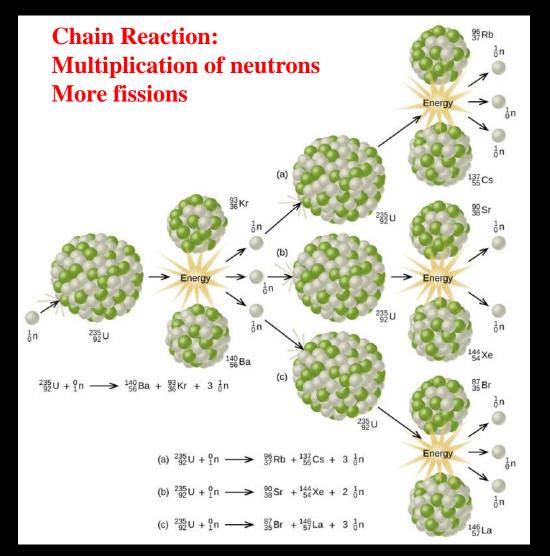
Nuclear Fission: Typical products

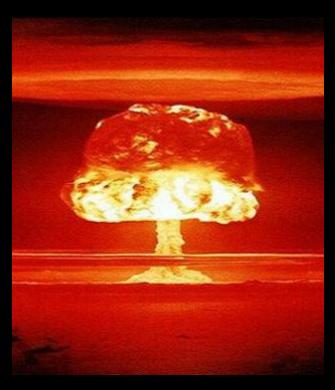
Fission can produce elements from Zn to Lanthanides Most appear in two peaks: 85-105 and 130-150





Cherenkov Radiation

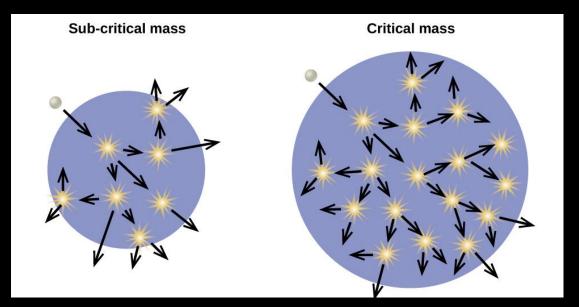

Blue glow that results from electrically charged particle moving thru media faster than speed of light in that media



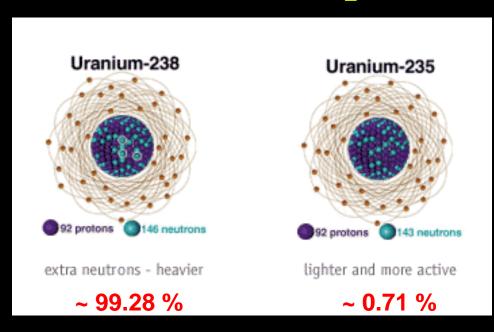
Nuclear Fission: Chain Reaction

Releases enormous (explosive) energy

Nuclear Fission: Definitions

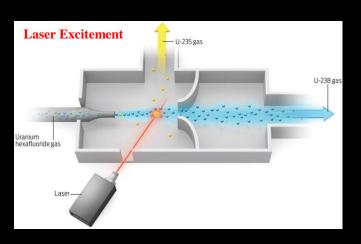

Fissile: material that will undergo fission as a result of any neutron source

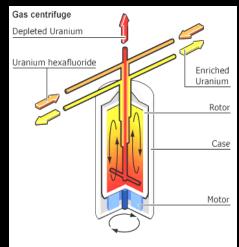
U-233 (from Thorium) U-235 Pu-239 Pu-241

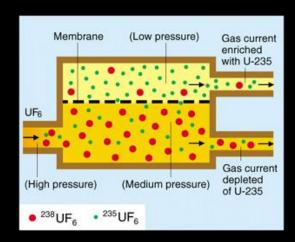

Most actinides with odd number of neutrons
Fissionable: material that requires a high energy neutron source.

Pu-240 U-238

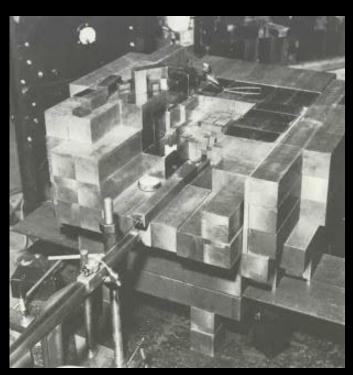
Fission is self-sustaining when neutrons produced exceed neutrons absorbed Critical Mass: amount of material needed to sustain a chain reaction Sub-critical mass: less than critical mass (not self-sustaining)




Isotopes of Uranium



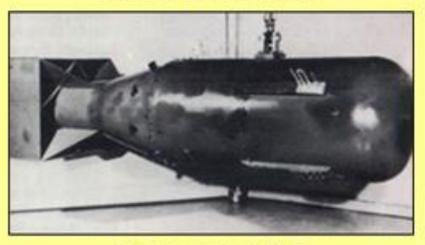
Since Z is the same, chemical properties of the isotopes are identical

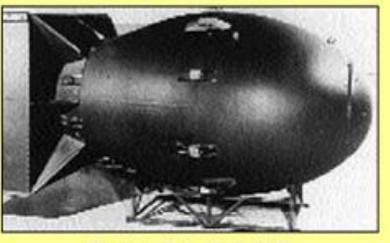


Tickling The Dragon's Tail

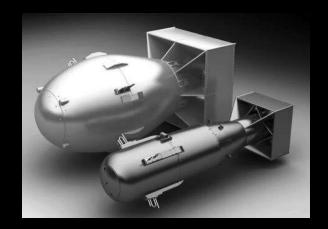
Manhattan Project Experiment to determine critical mass Sub-critical masses brought together on a rail

Device failed, Louis Sloton held Uranium spheres apart Died 5 days latter


Refused medications to allow detailed observations

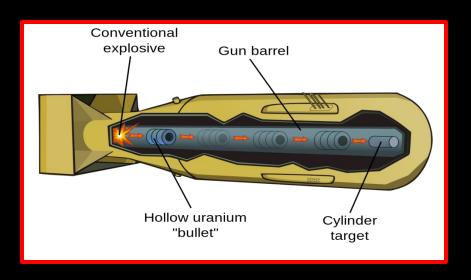

Atomic Bomb

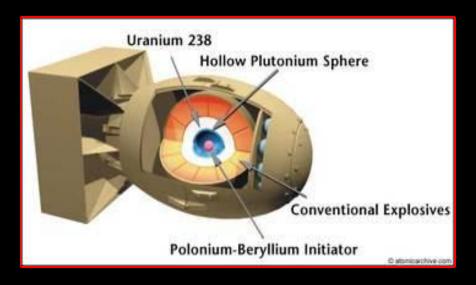
Little boy: Hiroshima

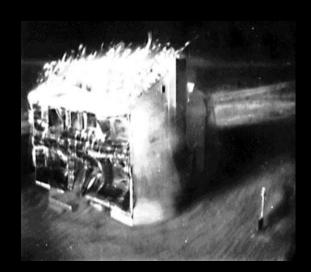


Fission uranium-235 Weight: 4400 kg Power: 15,000 tons of TNT

Fat Man : Nagasaki




Fission plutonium-239 Weight: 4535 kg Power: 21,000 tonnes de TNT



Atomic Bomb

Fission Reactors

Nuclear reactions that is controlled and sustained can be harnessed for power

Reactors control fission of U-235 or Pu 239 with 5 components:

Nuclear fuel

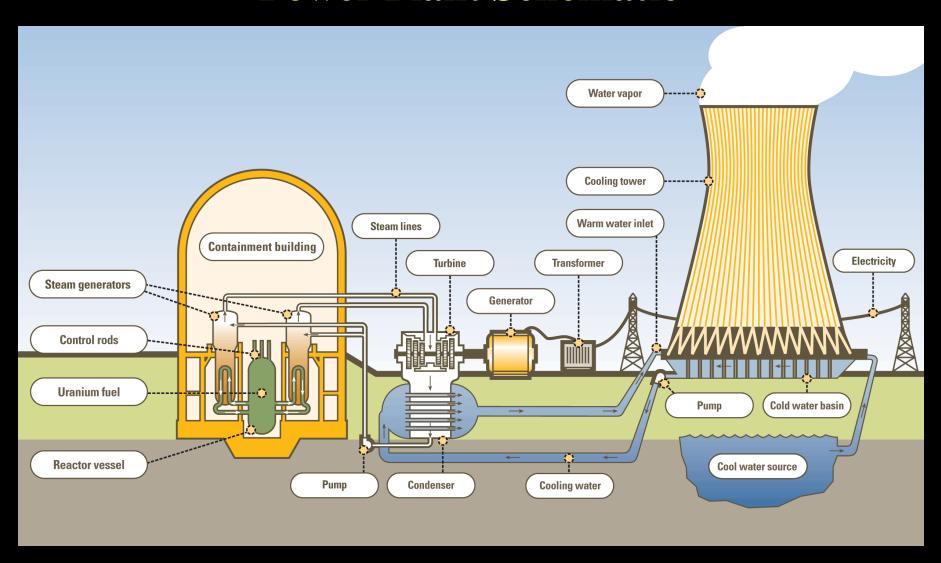
Moderator (slows neutrons)

Reactor coolant

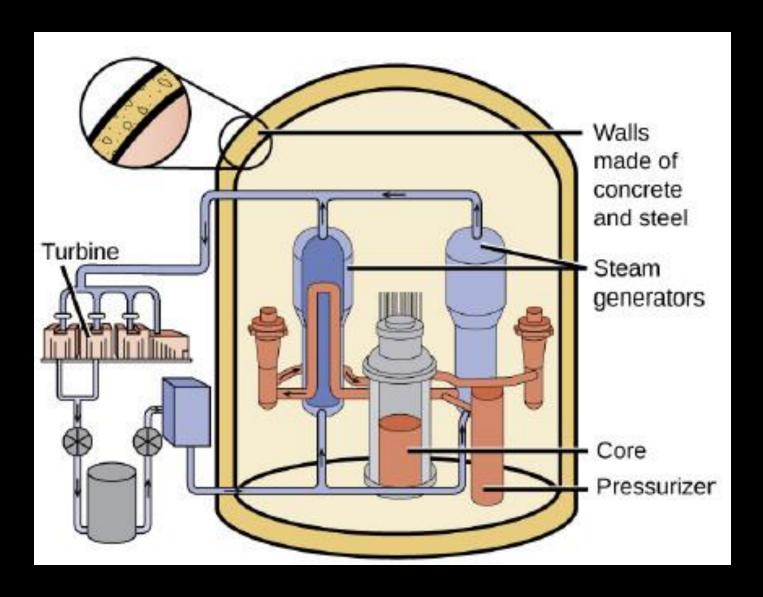
Control rods

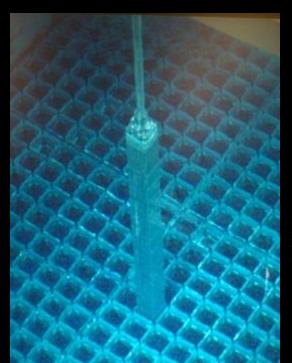
Radiation shield and containment

Nuclear fuel is separated (diluted) to prevent chain reaction


Neutron flux controlled by neutron absorbing material

Heat released used to boil water Steam turns turbine and generator




Power Plant Schematic

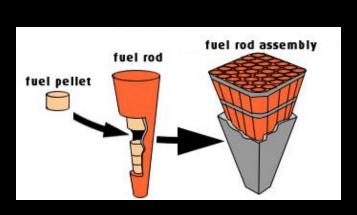
Fission Reactor Schematic

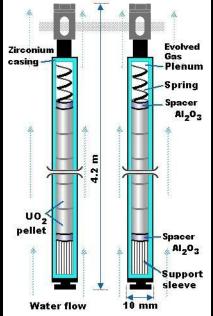
Nuclear Fuel Rods

Need fissionable material to sustain chain reaction

U-235

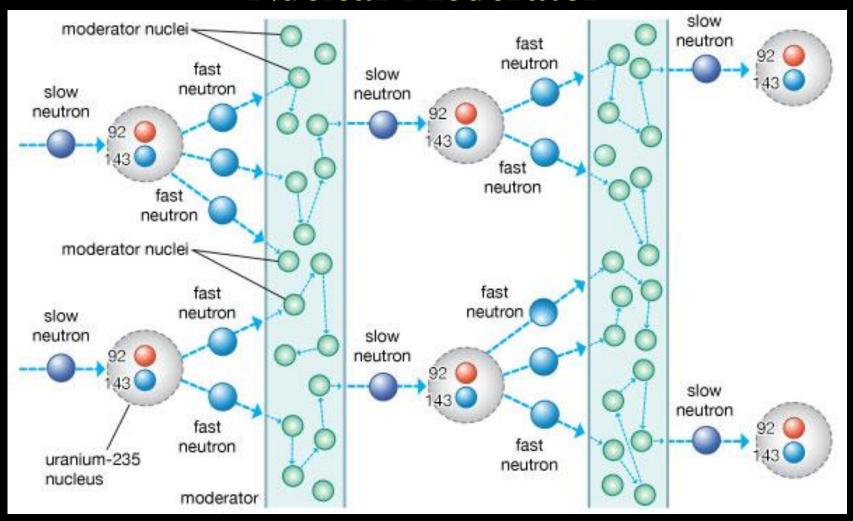
Uranium ore: $\sim 0.05 - 0.3 \%$ U-235

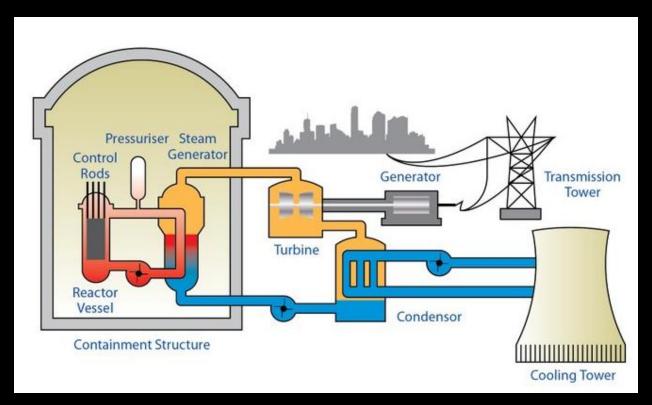

Fuel rods: enriched uranium ~ 5 % U-235

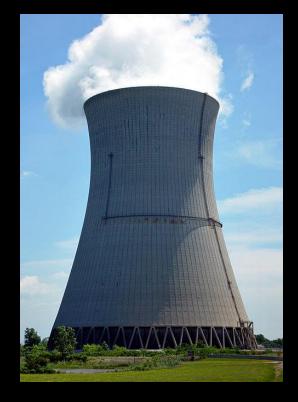

Well below level needed for atomic weapons

Eventually, consumed fuel drops efficiency

Depleted rods stored (thousands of years to decay)


Some material used for "depleted uranium" artillery shells Also used to isolate a variety of radio-isotopes

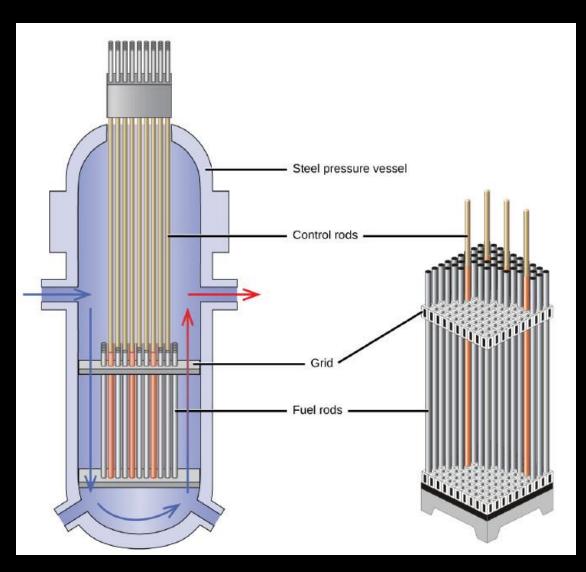



Nuclear Moderator

Slows neutron speed: reaction more efficient Graphite, Be,CO₂, H₂O, D₂O

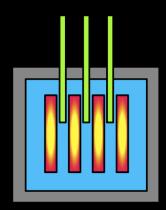
Reactor Coolant

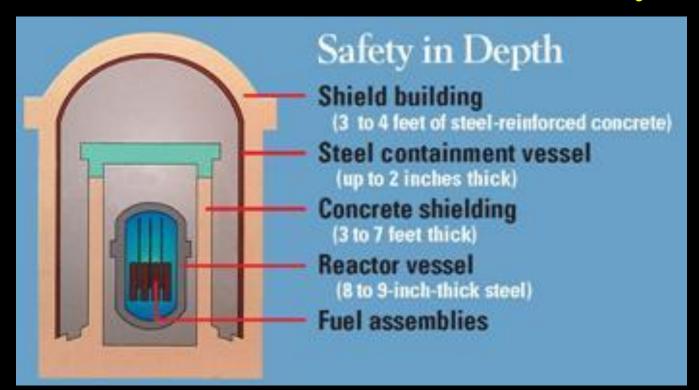
Removes heat from reactor


Two/Three loops:

From reactor to boiler
From boiler (steam) to turbine
From Turbine to Tower

H₂O, Na, Pb-Bi, molten salts

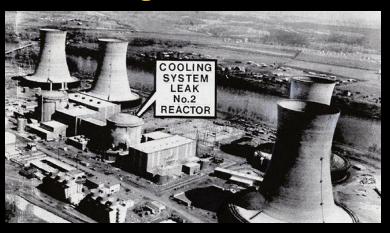

Control Rods

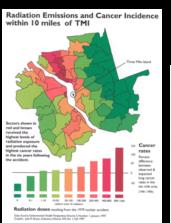

Neutron absorbing materials B, Cd, Hf

Control neutron flux Control amount of fission

Shield and Containment System

Reactors contain and produce a variety of radioactive materials Shielding and Containment: protects operating personnel


Reactors in USA must have containment shells


Nuclear Accidents: Three Mile Island

Nuclear power stations do not explode Accidents release radiation into environment

March 1979
Cooling pump failed
Water flooded containment building
Water superheated
Produced H₂ gas
Gases (H₂, Kr, Xe) vented to atmosphere

Took 10 years to clean Nothing "hazardous" was released

Nuclear Plant Shut By Radiation Leak

-HARRISBURG, Pa. (AP)

- An accident at the Three
Mile Island nuclear power
plant forced radioactive
steam into the sir at levels
that could be measured 16
miles away, but caused no
damage to the reactor core,
government. Investigators
and late Wednesday.

Charles Gallina, a Nuclear Regulatory Commission investigator who spent all day

Radiation Escapes From Nuclear Plant

RARRIBURI, Ps. — A water promot to cost the reactor at the 17 Mile bland continue power plant in deep today, and a meal account reddentive down mapped between the reddentive states and the same account workers might have be reacted and the three particular waters of the reacted and the transmission. They are a smaller was not considered daugement Enveror. July 8 Rethells. V

in." In Visitington, a systemation for Postiner Engianory Commission is that details were stending, but its effect we know your, it would accord one of the most arrives accordance we lead."

what we know one, it would assed it one of the must notions accordance we load.*

Officials at the plant, or an infeasith the papersons father about it or accordance. In flast shore, 4-doined "passes is surgoon," when the excellcontrol of a loss. The difficults had it makes the facility would remain use of soon about no coveragement. Now of soon about no coveragement. Binine Publiss, a spelimentar fetropolitical Edition, non eff inspection, of utilities that man face, and a value in the present rate process there are published accordancing that down tractice, but some of the reduction of some of the reduction of the same of the reduction of the second of the reduction of the same of

of all booking was higher than normal force the ore the from the first force the real control force the force the first the fi

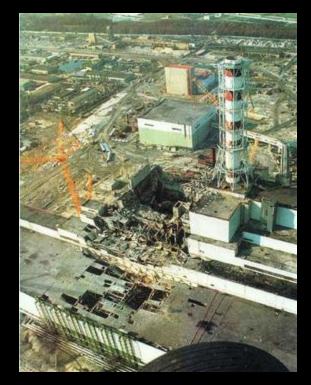
Russian Threatens To Bomb Embassy

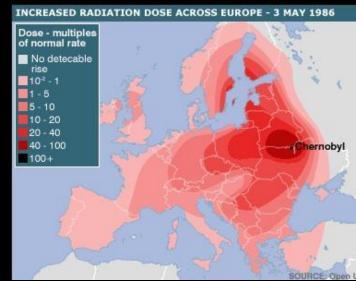
today from front pas cannot from intions of tradegue from the second of the control of the con

organizations were gaing for models for mass.

Enthusing officials evencious custom some ways of the old such solding in the abstracts above the maje custom file worse of sold solding in the abstract above the maje custom file worse of sold to make with consultant above, it is not with consultant above, it is not five years from a recognitive common sound may written.

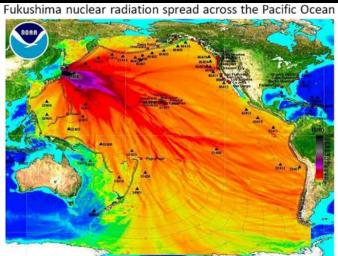
Nuclear Accidents: Chernobyl
April, 1986
Unauthorized experiment
Minimum safety devices
Reactor became uncontrolled
Superheated water ruptured reactor
Massive release of radioactivity


Graphite moderator ignited

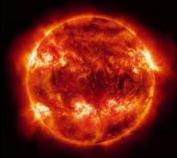

Thousands died

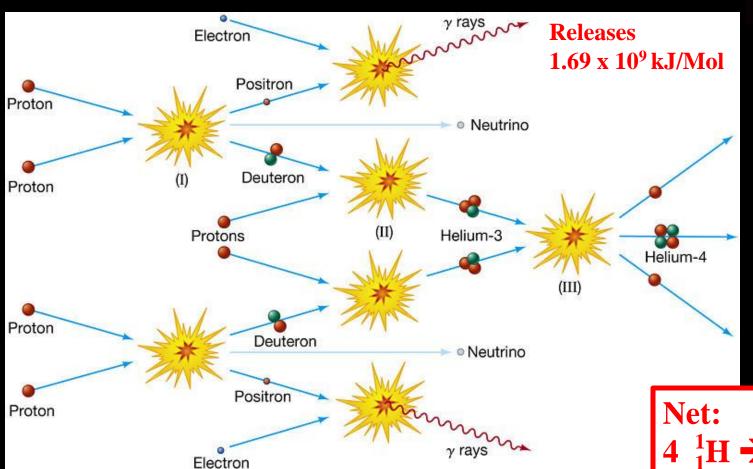
Area is still a wasteland

Russian reactors have no containment


Nuclear Accidents: Fukushima

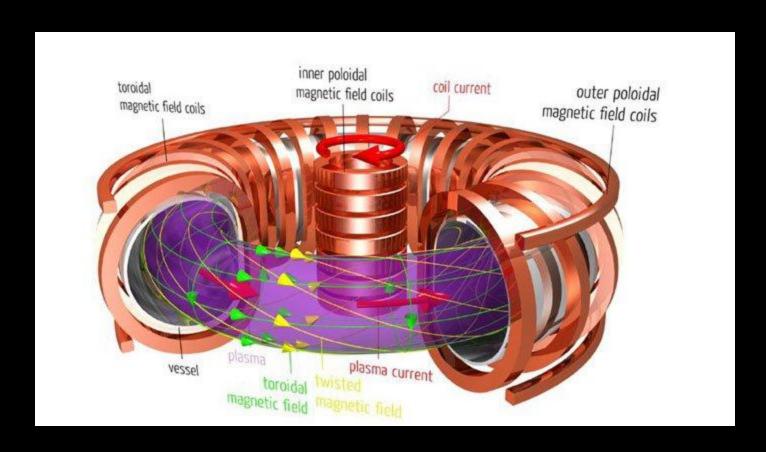
March, 2011
9.0 Earthquake, followed by Tsunami
3 reactor meltdowns
Hydrogen explosions / fire
~ 200,000 people displaced





Thermonuclear Fusion

Fusion: colliding small atoms together to form larger atoms Energy source of stars


Requires: 15 M K

Net: $4 {}_{1}^{1}H \rightarrow {}_{2}^{4}He + 2 {}_{1}^{0}n$

Fusion Reactors

Theory: contain plasma in magnetic field So far, only brief episodes successful

Uses of Radioisotopes

Radioisotopes have same chemistry as stable isotopes

Radioactivity allows detection

Allows radioisotopes to be effective tracers Used in medical diagnosis and treatment

Common Medical Isotopes:

Technecium-99

Thallium-201

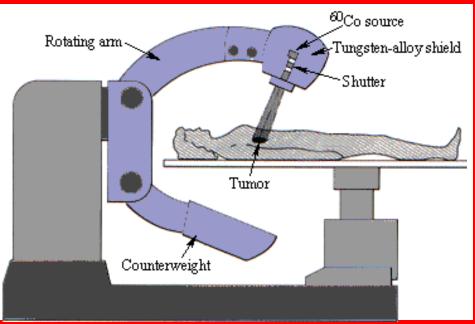
Iodine-131

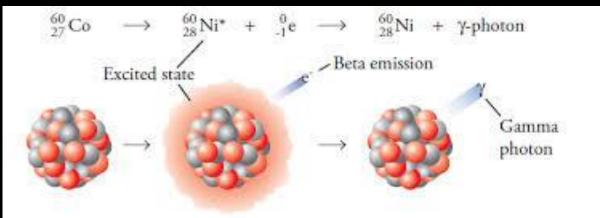
Sodium-24

Annually:

10 million nuclear medicine procedures

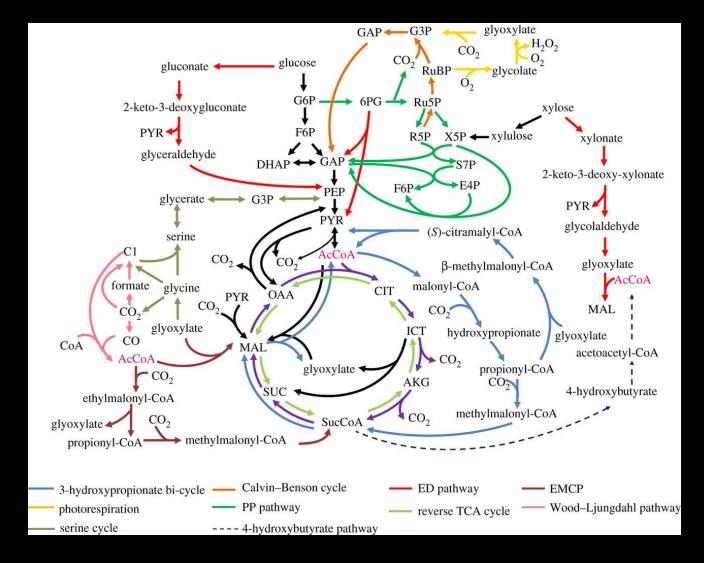
100 million nuclear medical tests

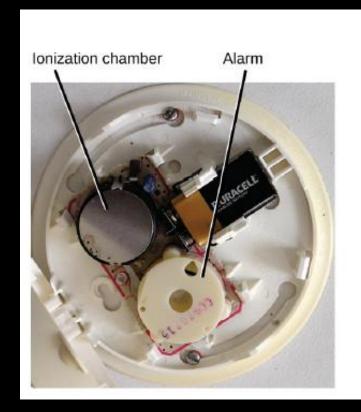

Uses of Radioisotopes

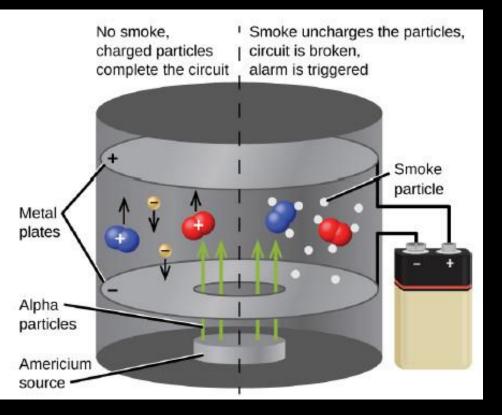

Radioactive Isotope	Applications in Medicine	
Cobalt-60	Radiation therapy to prevent cancer	
Iodine-131	Locate brain tumors, monitor cardiac, liver and thyroid activity	
Carbon-14	Study metabolism changes for patients with diabetes, gout and anemia	
Carbon-11	Tagged onto glucose to monitor organs during a PET scan	
Sodium-24	Study blood circulation	
Thallium-201	Determine damage in heart tissue, detection of tumors	
Technetium-99m	Locate brain tumors and damaged heart cells, radiotracer in medical diagnostics (imaging of organs and blood flow studies)	

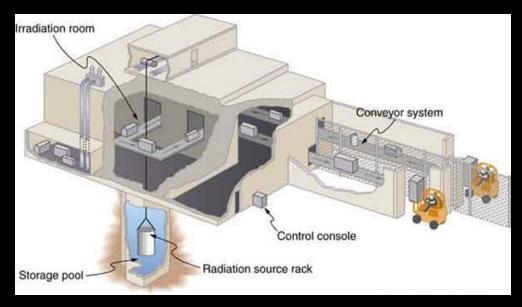
Short Half-lives ... often made on-site

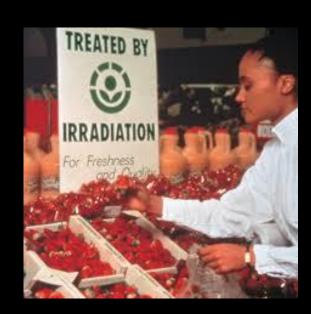
Cobalt-60 Used in Radiation Therapy




Gamma radiation kills cancer cells

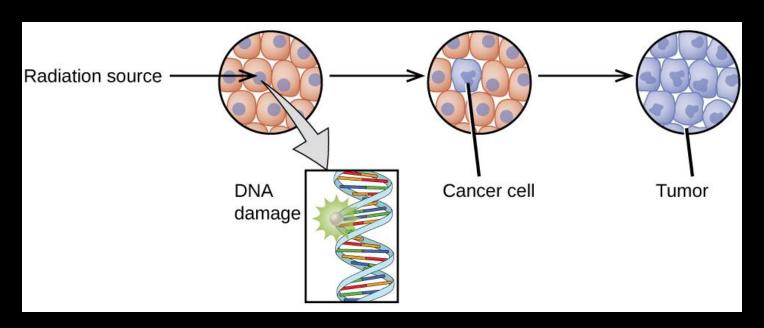

Carbon-14 Used as Tracer: Determines Biochemical Pathways


Americium-241: Smoke Detectors



Food Sterilization: C - 60 & Cs - 137

Objects exposed to γ-radiation
Food
Medical instruments
Bulk Cargo
Ions produced attack DNA
Biological dies



Biological Effects of Radiation

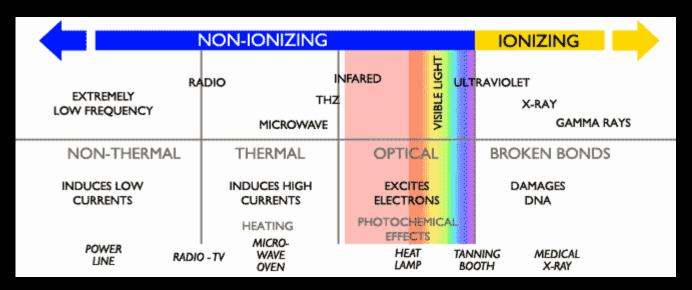
All radioactive materials emit high energy particles or electromagnetic waves This radiation may:

thermal heating chemical bond breaking ionize molecules

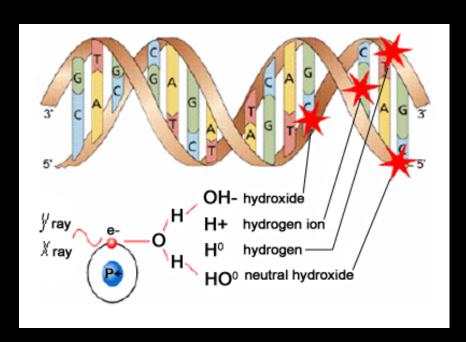
No natural defenses against incoming radiation

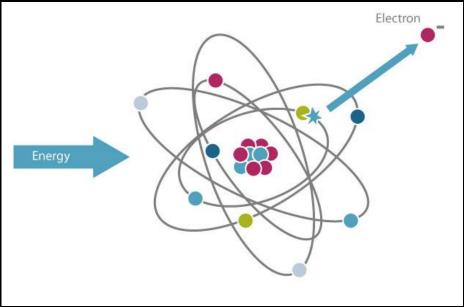
Ionizing vs. Non-Ionizing Radiation

Ionizing


Higher energy electromagnetic waves (x-ray, γ – ray) High energy particles (α , β particles)

Energy sufficient to pull electrons away from nucleus


Non-Ionizing


Lower energy electromagnetic waves

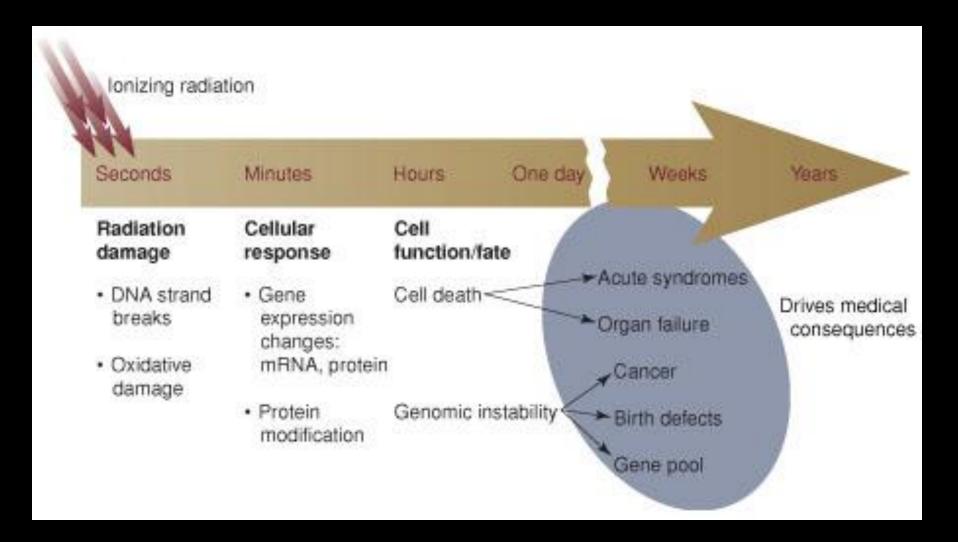
Insufficient energy to ionize, but does excite electrons

Ionizing Radiation: Direct Effect

High energy radiation removes electron Resultant ion has high energy Biological structure altered

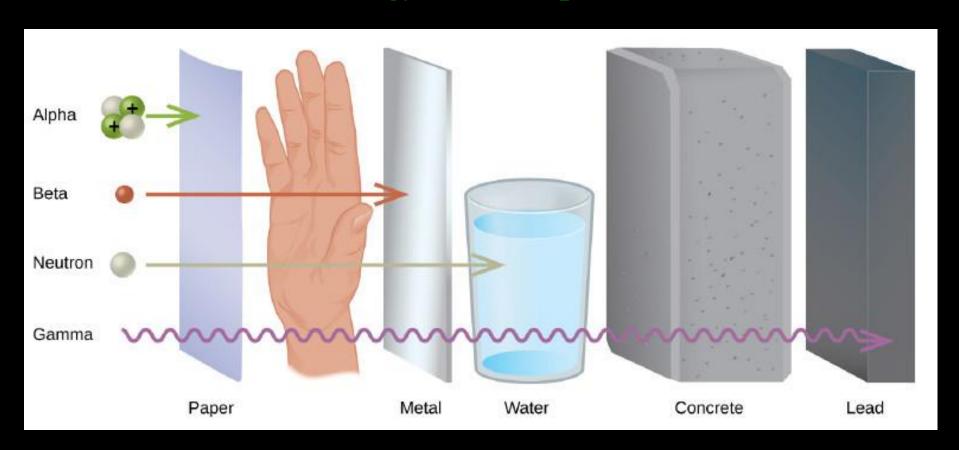
DNA is the primary target of radiation exposure

Non-Ionizing Radiation: Indirect Effect

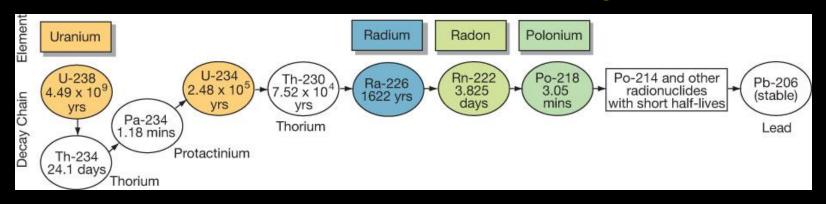

Indirect Foure Radiation excites water; products attack DNA water radiation free radical DAMAGE DAMAGE radiation

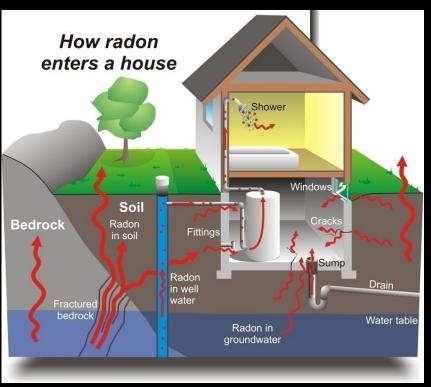
Direct Route

Radiation directly attacks DNA

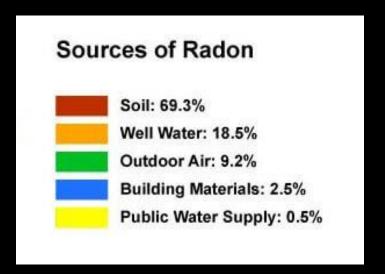

Biological Effects of Radiation

Insidious since damage may take years to manifest

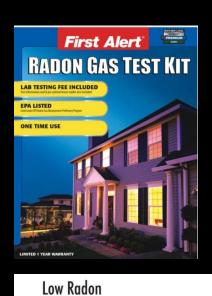



Radiation Penetration

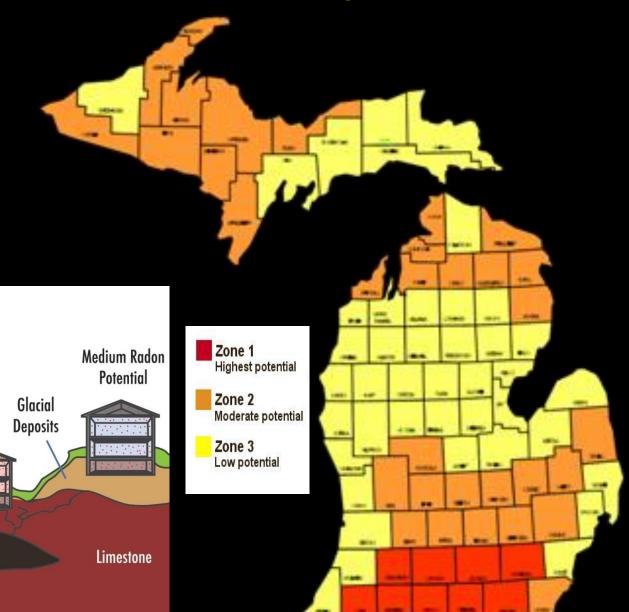
> The energy, the > the penetration



Radon: Health Hazard in Michigan



Major radiation exposure source A Gas: An alpha emitter Considered major risk for lung cancer


Radon: Health Hazard in Michigan

Potential

Coarse Soil

Granite


Fault

High Radon

Potential

Caves

Radon: Health Hazard in United States

Measuring Radiation Exposure

Geiger Counter

Gas filled tube
Radiation ionized the gas
Amount of radiation proportion to level of ionization

Scintillation Detector

Substance emits light when struck by radiation Amount of radiation proportion to level of emitted light

Dosimeter (Dose meter)

Measure personal exposure

Many types:

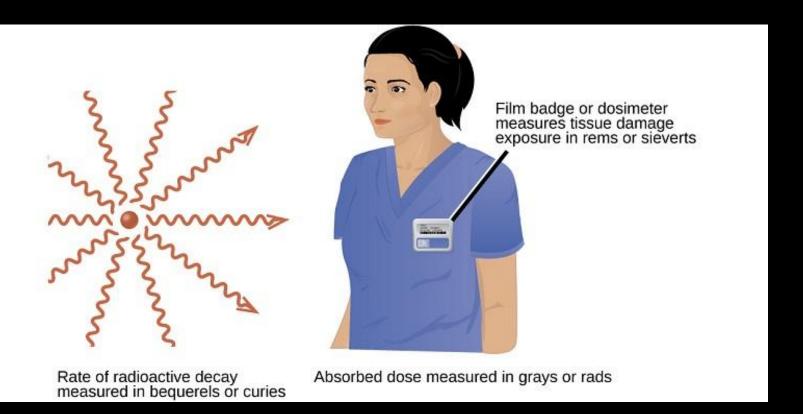
film badge

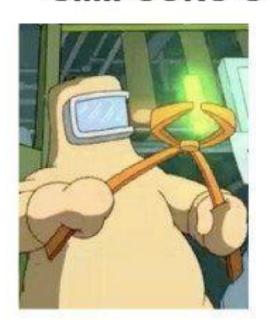
electronic

thermoluminescence

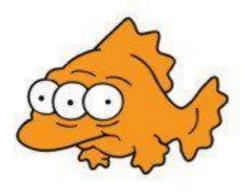
quartz fiber

Units of Radiation Measurement


Measurement Purpose	Unit	Quantity Measured	Description
activity of source	becquerel (Bq)	radioactive decays or emissions	amount of sample that undergoes 1 decay/second
	curie (Ci)		amount of sample that undergoes 3.7 × 10^{10} decays/second
absorbed dose	gray (Gy)	energy absorbed per kg of tissue	1 Gy = 1 J/kg tissue
	radiation absorbed dose (rad)		1 rad = 0.01 J/kg tissue
biologically effective dose	sievert (Sv)	tissue damage	Sv = RBE × Gy
	roentgen equivalent for man (rem)		Rem = RBE × rad



Units of Radiation Measurement


SIMPSONS GUIDE TO NUCLEAR RADIATION

Bequerel [Bq] How brightly your Cesium glows

Gray [Gy]
How brightly
Cesium will make
you glow

Sieverts [Sv]
How many extra
eyes will you have
after glowing?

Amount of Radiation

Co-60 ($t^{1/2} = 5.26$ y) is the γ source for cancer therapy For a 5.00 gram sample, what is the activity?

Activity:

 $\lambda N = (\ln 2/ t^{1/2}) N = (\ln 2/ 5.26 \text{ y}) 5.00 \text{ g} = 0.659 \text{ g/y} \text{ that decays}$

Converting this activity to decays per second:

Since 1 decay/sec = 1 Bq, activity in Bq = 2.10×10^{14} Bq

Converting Bq to Ci:

$$2.10 \times 10^{14} \frac{\text{decay}}{\text{s}} \times \frac{1}{3.7 \times 10^{11} \frac{\text{Ci}}{\text{decay/s}}} = 5.7 \times 10^{2} \text{ Ci}$$

Problem: Amount of Radiation

Tritium (H-3, $t^{1/2} = 12.32$ y); atomic mass= 3.016 amu is used in a variety of self-illuminating devices; Beta particle from the radioactive decay strikes a phosphor that produces a glow. What ism the activity of a 1.00 mg sample?

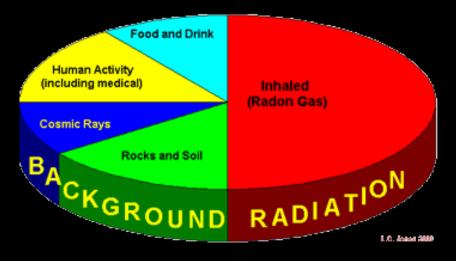
Activity:

$$\lambda N = (ln~2/~t^{1/2})~N = (ln~2/~12.32~y)~1.00~mg~~x~\underline{1}~\underline{g} = 5.63~x~10^{-5}~g/y~that~decays$$

$$1000~mg$$

Converting this activity to decays per second:

Since 1 decay/sec = 1 Bq, activity in Bq = 3.56×10^{11} Bq


Converting Bq to Ci:

$$3.56 \times 10^{11} \frac{\text{decay}}{\text{s}} \times \frac{1}{3.7 \times 10^{11} \frac{\text{Ci}}{\text{decay/s}}} = 0.952 \text{ Ci}$$

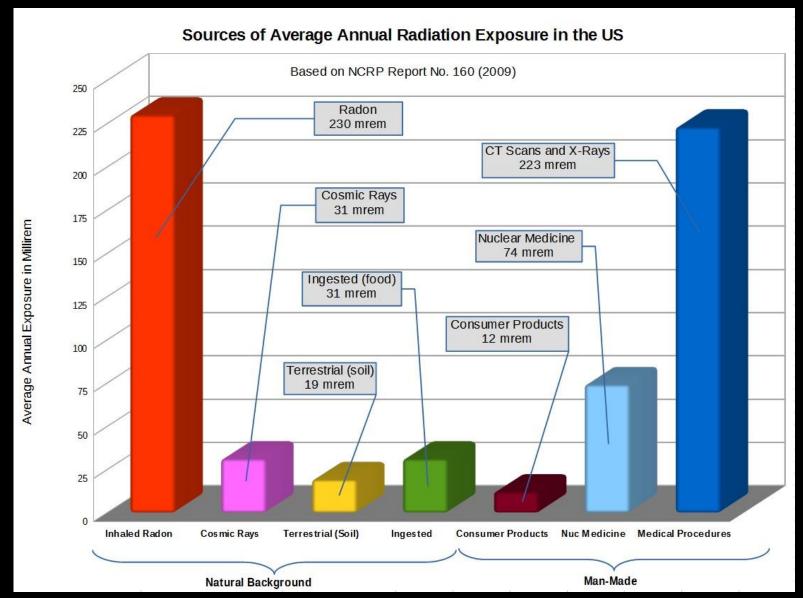
Radiation Effects on tissues depends upon:

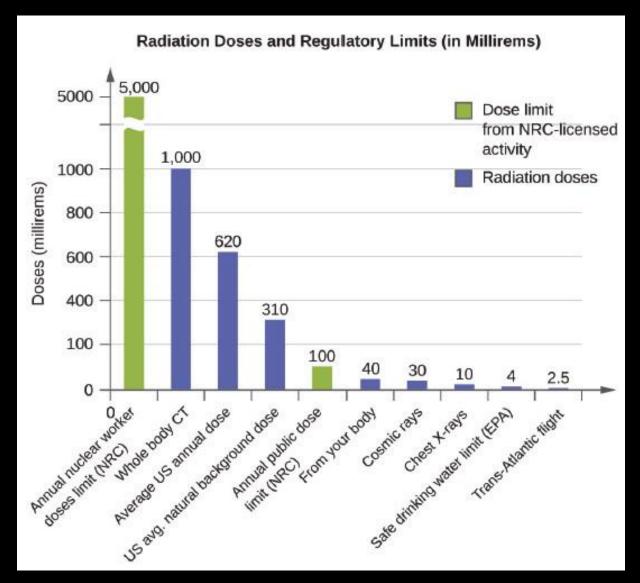
type of irradiation energy at impact internal vs. external location of source length of time of exposure

Sources:

Background: cosmic rays, radon, radioactive minerals

Medical: x-rays, CAT scans, tracer studies


Therapy: radioactive therpay agents


Cigarette Smoke

Food

Increased cosmic radiation at altitude (flying)

RADIATION EFFECTS

Measurements in millisieverts (mSv). Exposure is cumulative.

Potentially fatal radiation sickness. Much higher risk of cancer later in life.

10,000 mSv: Fatal within days.

5,000 mSv: Would kill half of those exposed within one month.

2,000 mSv: Acute radiation sickness.

No immediate symptoms. Increased risk of serious illness later in life.

1,000 mSv: 5% higher chance of cancer.

400 mSv: Highest hourly radiation recorded at Fukushima. Four hour exposure would cause radiation sickness.

100 mSv: Level at which higher risk of cancer is first noticeable

No symptoms. No detectable increased risk of cancer.

20 mSv: Yearly limit for nuclear workers.

10 mSv: Average dose from a full body CT scan

9 mSv: Yearly dose for airline crews.

3 mSv: Single mammogram

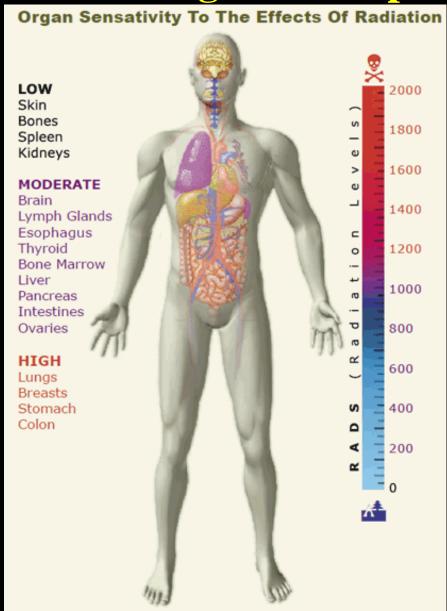
2 mSv: Average yearly background radiation dose in UK

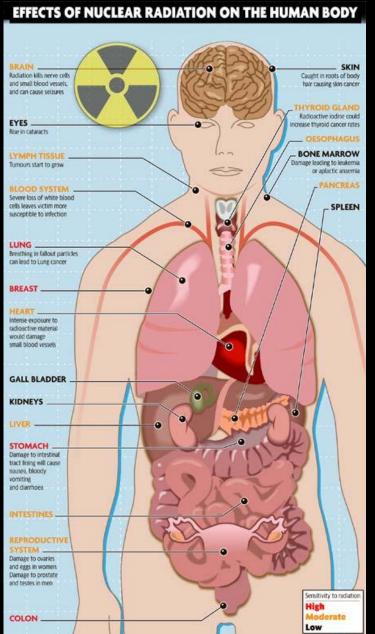
0.1 mSv: Single chest x-ray

EYES High doses can trigger cataracts months later.

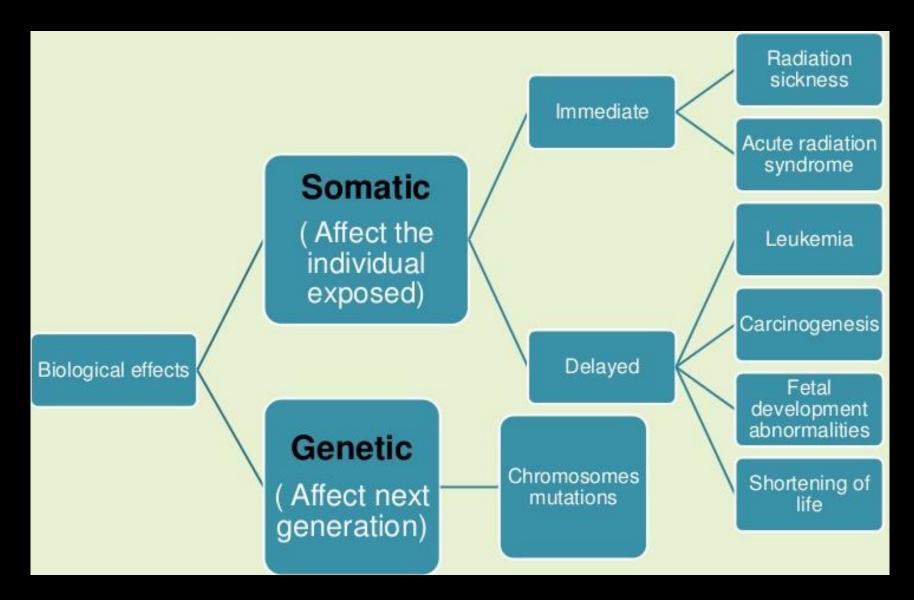
THYROID Hormone glands vulnerable to cancer. Radioactive iodine builds up in thyroid. Children most at risk.

LUNGS Vulnerable to DNA damage when radioactive material is breathed in.


STOMACH Vulnerable if radioactive material is swallowed.


REPRODUCTIVE ORGANS

High doses can cause sterility.


SKIN High doses cause redness and burning.

BONE MARROW Produces red and white blood cells. Radiation can lead to leukaemia and other immune system diseases.

Biological Effects of Ionizing Radiation

Effects of Radioactivity Over Time Hour: