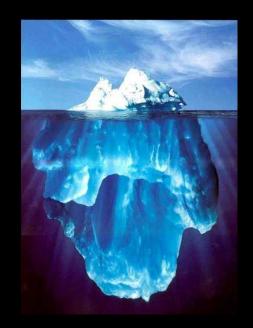


Solids

States of Matter-Solid

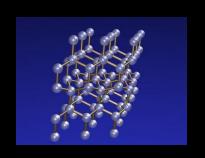
Form Rigid


Compressibility Very Low (Exam→ Not Compressible)

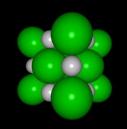
Shape Constant (definite)

Volume Constant (definite)

Particle Movement Vibration in fixed position


Example: Ice

Three Types of Crystalline Solids

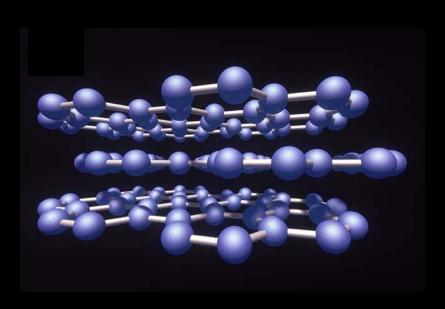

Atomic **Diamond**

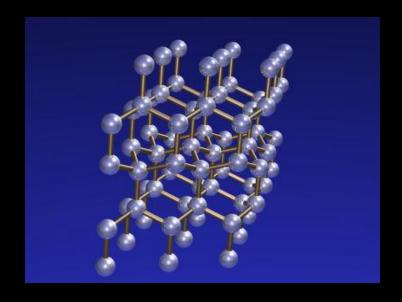
Atoms



Ionic Sodium Chloride Ions

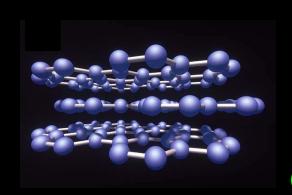
Molecular Molecules Glucose

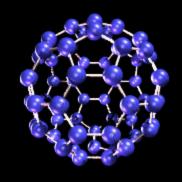




Solids: Physical Properties

Macro properties observed Determined by atomic level geometry & forces





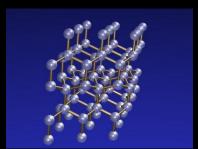
Diamond

Atomic Solids

C₆₀ Bucky Ball

Characteristics:

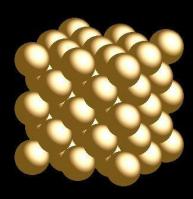
Graphite

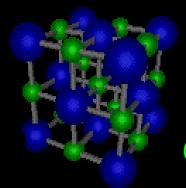

Fundamental Unit: Atom

Shape determined by atoms packing geometry

(Atoms at every vertex of rigid geometrical shape)

Represented by chemical formula

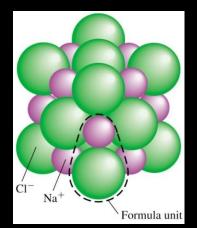

Variable Properties


Diamond

Iron

Gold

Ionic Solids


Characteristics:

Large Matrix of Charged Particles Shape determined by ion charges and size

Represented by Formula Unit

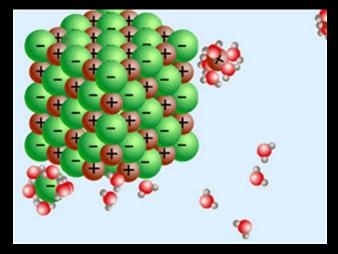
Strong Attractive Forces 400 – 1100 kJ / mole

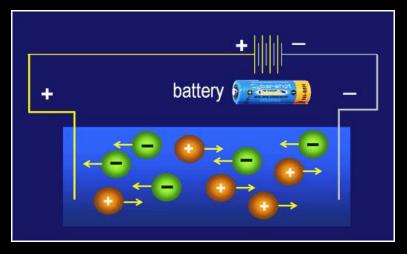
Ionic Solids

Ionic Bond (Attractive force between ions governed by Coulomb

 $\mathbf{F} \propto \mathbf{q}_1 \mathbf{q}_2 / \mathbf{r}^2$

Higher melting point:


Greater charge: stronger force


Smaller ions; r² smaller

Higher boiling point

Lower vapor pressure

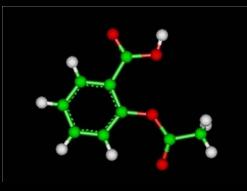
Molecular Solids

Characteristics:

Solid CO₂

Solid H₂O

Fundamental Unit: Molecule


Shape determined by molecular geometry

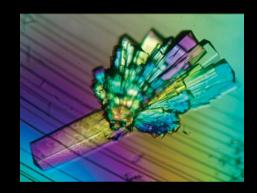
Represented by chemical formula

Low Melting Point < 200 °C

Low Attractive Forces
H-Bonds
Dipole-Dipole
London Dispersion
10 – 40 kJ / mole

Aspirin

Identify the type of crystalline solid:


Ammonia: Molecular

Iron: Atomic

Cesium fluoride: Ionic

Argon: Atomic

White phosphorus (P_4) : Molecular

Metals - Left Side Periodic Table

Metallic shine or luster
Flexible
Solids (mostly) @ room temp
Ductile - can be drawn into wires
Malleable - can be pounded into thin sheets
Conduct heat & electricity

Metals

Most Elements (> 80)

Beyond Iron:"Heavy Metals"


More Metallic

1 2	IA 1 H 3 Li	IIA Be	Periodic Table of the Elements										IIIA ⁵ B	IVA ⁶ C	VA 7	VIA ⁸ O	VIIA ⁹ F	O He
3	Na Na	Mg	IIIB	IVB	VB	VIB	VIIB		– VII -		IB	IIB	AI	Si	15 P	¹⁶ S	CI	Ar
4	19 Y	Ca Ca	Sc 21	22 Ti	23 V	Cr	Mn	Fe Fe	²⁷ Co	Ni Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr Kr
5	Rb	Sr	39 Y	Zr	Nb	⁴² Mo	43 Tc	Ru	45 Rh	Pd	Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	Sb	⁵² Te	53	⁵⁴ Xe
6	⁵⁵ Cs	⁵⁶ Ba	⁵⁷ *La	72 Hf	73 Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
7	Fr	Ra Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					
*	* Lanthanide Series		⁵⁸ Ce	Pr	Nd Nd	Pm	Sm	_{ខទ}	Gd Gd	65 Tb	Dy Dy	67 Ho	₈ E	⁶⁹ Tm	70 Yb	Lu Lu		
+	+ Actinide Series		90 Th	91 Pa	⁹² U	Np	Pu	95 Am	⁹⁶ Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	Lr		

Metalloids (Semi-Metals) – "Staircase"

Properties (metallic or nonmetallic) depend on environment Semi-conductors

good conductor at high T poor conductor at low T

B Boron

Si Silicon

Ge Germanium

As Arsenic

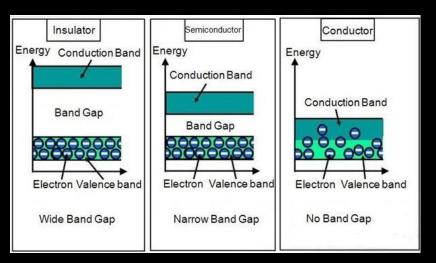
Sb Antimony

Te Tellurium

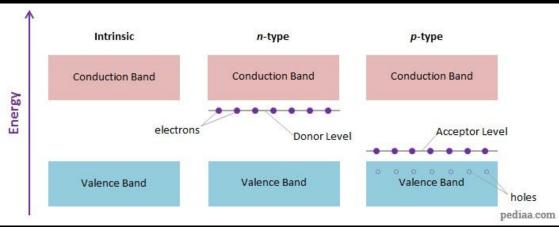
Po Polonium?

At Astatine ??

6,7, or 8 Elements


Staircase

At on some, Most consider At a halide


Semi-Conductors: Current Flow Depends on Energy Gap

Electrons reside in two possible energy states:

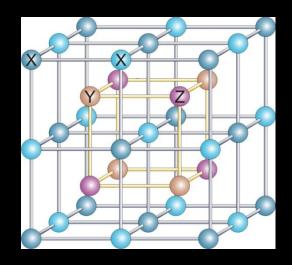
Valence and Conductance

Conductance depends on relative energy difference Between bands

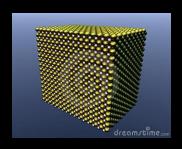
Alloys: A Solid Dissolved in a Solid

More than one metal element in crystal structure

Primary Metal: Base (Solvent)

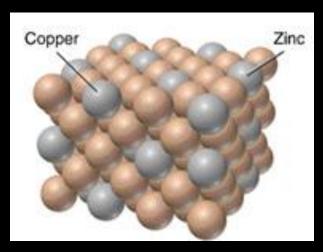

Secondary Metal: Solute

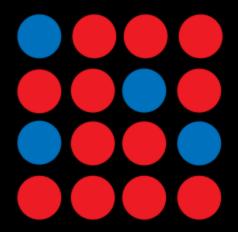
2 components = Binary


3 components = Tertiary

4 components = Quaternary

5 components = Quinary




Mixture of metals: changes physical properties

Some atoms of base metal replaced

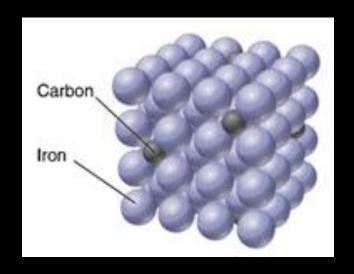
Brass

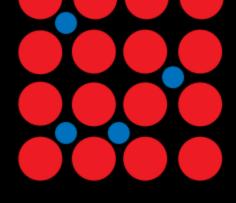
Schematic

Sterling silver (93% silver, 7% copper)

Brass (67% copper, 33% zinc)

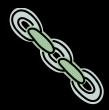
Bronze (88% copper, 12 % tin; but composition variable)


Pewter (85% tin, 7% copper, 6% bismuth, 2% antimony)



Interstitial Alloys

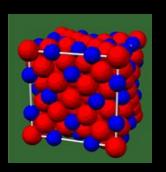
Smaller element atoms reside between metal atoms

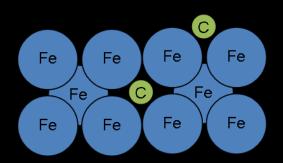

Steel

Schematic

Smaller atoms significantly alter physical properties Provide alternate bonding network

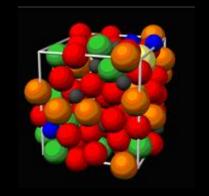
Interstitial Alloys

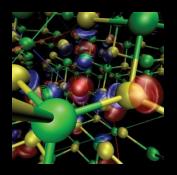

Number of interstitial atoms defines alloy properties


Mild steels (<0.2% carbon): malleable ductile chains, nails, and cables

Medium steels (0.2-0.6% carbon): harder than mild steels rails and structural beams.

High-carbon steels (0.6-1.5% carbon): very hard springs, tools, and knives



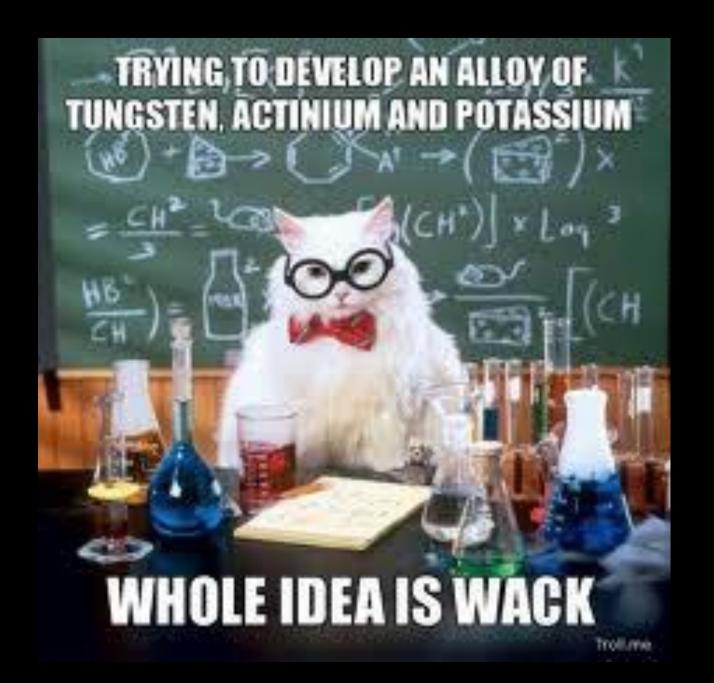

Combination Alloy: Substitutional & Interstitial

Stainless Steel

Start: Interstitial alloy of Fe & C Substitute: Some Fe with Cr & Ni

Famous Failures

Titanic:


Cheap Wrought Iron Rivets Below Waterline Slag impurities made rivets brittle

Aluminum Compressed Gas Cylinders Cracks in head and neck of cylinder

Failures typically occur at different metal interfaces

