

Unit 01 Outcomes

Define the following terms basic to chemistry:

Chemistry = science that studies matter and its interactions

Matter = has mass & occupies space

Energy = ability to do work (move matter)

Mass = "intrinsic (just is) property" called inertia

= measure of quantity

Weight = a force (mass x gravity) measured in pounds

Mixture = 2 or substances in variable composition

Homogeneous = "same" ... uniform composition

Heterogeneous = "different" ... variable composition

Define the following relating to chemical components:

Substance

Single chemical entity
Only one kind of matter
Has one definite composition
Has definite properties
Homogeneous

Compound

Can be chemically sub-divided Contains 2 or more kinds of atoms (molecule)

Molecule

Can be chemically sub-divided into atoms Contains 2 or more atoms

Define the following relating to chemical components:

Atom

Smallest particle of an element Combines with other atoms to form molecules

Element Can't be sub-divided Contains only 1 kind of atom

Define the following relating to changes and properties:

Physical Property
Observed without forming new substance
Described by senses
Color, shape, odor, taste
Measurable
mp, bp, density

Physical Change New form of same substance No new substance (chemical entity) formed

Define the following relating to changes and properties:

Chemical Property

New substance(s) formed when observed

List of chemical changes

"may react to form..."

Old substance(s) destroyed

New substance(s) formed

List the 3 states of matter and describe the characteristics of each

1. Solid

Form

Compressibility

Shape

Volume

Particle Movement

Rigid

Very Low

Constant (definite)

Constant (definite)

Vibration in fixed position

2. Liquid

Form

Compressibility

Shape

Volume

Particle Movement

Fluid (Flows)

Extremely Low

Variable (Fills Container)

Constant (Definite)

Some attraction, particles

move freely beneath surface

List the 3 states of matter and describe the characteristics of each

3. Gas

Form Fluid (Flows)

Compressibility Very High

Shape Variable (Fills Closed Container)

Volume Variable (Fills Closed Container)

Particle Movement Random, Independent

Describe the difference between mass and weight.

Mass

Depends on the quantity

Does not change with location

Can never be zero

Measured in grams

Weight

Depends on force (gravity)

Changes with location

Can be zero

Measured in Pounds

Classify units as being basic or derived

Basic

```
mass = gram (g)
length = meter (m)
time = second (s)
chemical quantity = mole (mol)
```

Derived (or combination)
area = length x width
volume = length x width x height
density = mass/volume

Identify given and wanted quantities in a problem that are related by a "per" expression (conversion factor).

Given = furnished or known information

= initial or starting quantity

Wanted = information sought = the solution

"per" expression = conversion factor

= relationship between given and sought

= relationship between units or quantities

Set up and solve problems involving a "per" expression (conversion factor) by dimensional analysis.

- 1. What is being asked?
- 2. What do I know?
- 3. Can I get from 2

 1? ("per" expressions")
- 4. "Turn the crank" (Do the math)

USE UNITS

Units wrong, most likely have wrong answer

Units can provide means to solution

Write the standard symbols for:

```
Grams = g
```

Liters = L (lower case l also acceptable)

Meters = m

Moles = mole or mol

Write the standard symbols for the metric prefixes:

Kilo- k

Centi- c

Milli- m

State and write with appropriate metric prefixes the relationship between any unit and its corresponding

kilo-unit = 1000 x unit

centi-unit = 1/100 x unit (0.01 x unit)

milli-unit = 1/1000 x unit (0.001 x unit)

Given a mass, length or volume expressed in metric units, kilo units, centi units, or milli units express that quantity in the three other units.

Kilo unit = 1000 x unit = 100,000 x centi-unit = 1,000,000 x milli-unit

Centi-unit = 10^{-5} x kilo-unit = 1/100 x unit = 10 x milli-unit

milli-unit = 10^{-6} x kilo-unit = 10^{-1} x centi-unit = 10^{-3} x unit

In a measured quantity distinguish the numeral and the unit label.

Recognize that to be added or subtracted, measured quantities must have identical units.

When adding or subtracting, check units for consistency

These outcomes simply to "be able to do practice exam problems"

Add & subtract measured quantities, correctly expressing units

Multiply & divide measured quantities

Recognize that dividing a unit by the same unit gives an answer of one (This is called CANCELLATION.)

Reduce the units obtained as a result of a calculation to their lowest terms

Starting Unit x Final Unit = Wanted Unit Starting Unit

How many square centimeters in a square meter? Each measurement, both length and width needs to be converted

$$1 \text{ m}^2 \text{ x} \quad (\underline{100 \text{ cm}})^2 = 1 \text{ x } 10^4 \text{ cm}^2$$

 $(1 \text{ m})^2$

A sprinter runs the 100 meter dash in 10.1 seconds. What is his speed in miles per hour?

$$12 \text{ in} = 1 \text{ ft}$$
 $5280 \text{ ft} = 1 \text{ mile}$ $2.54 \text{ cm} = 1 \text{ in}$ $60 \text{ sec} = \text{min}$ $60 \text{ min} = 1 \text{ hour}$

$$100 \text{ m} \times 100 \text{ cm} \times 1 \text{ inch} \times 1 \text{ inch} \times 1 \text{ mile} \times 60 \text{ sec} \times 60 \text{ min} = 22.1 \text{ mi} / \text{hr}$$
 $10.1 \text{ sec} \times 1 \text{ m} \times 2.54 \text{ cm} \times 12 \text{ in} \times 5280 \text{ ft} \times 1 \text{ min} \times 1 \text{ hr}$

Convert 5.6 kg to mg

$$5.6 \text{ kg} \times 1000 \text{ g} \times 1000 \text{ mg} = 5.6 \times 10^6 \text{ mg}$$
 $1 \text{ kg} \times 1 \text{ g}$