

Unit 02 Outcomes

Identify the exponent and base in a given expression.

Describe the function of a positive exponent of base 10 as a multiplying factor.

For
$$A = 10^{y}$$

Value of $A = 10 \times 10 \times 10$ (y times)
 $10^{2} = 10 \times 10 = 100$

Describe the function of a negative exponent of base 10 as a dividing factor.

For
$$A = 10^{-y}$$

Value of $A = 1/10 \times 1/10 \times 1/10$ (y times)
 $10^{-2} = 1/10 \times 1/10 = 0.01$

Recognize that the notation 10° is equal to one.

$$10^0 = 1$$

Identify in a measured quantity expressed in exponential form: coefficient, exponential, and unit label.

Coefficient x exponential units where exponential = 10^x

Convert any number in ordinary decimal form to exponential form, or any number in exponential form to ordinary decimal form.

Any number has a variety of exponentials:

Number	=	Coefficient x	ext	onential
n	=		_	10exponent
33,700.	=	337,000.	X	10^{-1}
33,700.	=	33,700.	X	10^{0}
33,700.	=	3,370.	X	10^{1}

Express any quantity in scientific notation

Number = $C \times 10^{exponent}$ where coefficient (C) is $1 \le C < 10$

Add and subtract quantities in exponential notation and express results in standard exponential notation.

Calculator → do calculation

Manually → exponents must be equal to +/- coefficients

Recognize that to be added or subtracted numbers in exponential form must have the same exponent.

Multiply & divide quantities in exponential notation and express results in standard exponential notation.

This requires practice on personal calculator

Express the following in scientific notation

0.0004589	4.5889×10^{-4}		
12334	1.2334×10^4		
56.7	5.67×10^{1}		
337	3.37×10^2		
56789	5.6789×10^4		
0.0020	2.0×10^{-3}		

Express the following in decimal notation

$$8.532 \times 10^{-4} = 0.0008532$$

$$8.532 \times 10^{4} = 85320$$

$$8.532 \times 10^{0} = 8.532$$

Calculate the following

$$3.45 \times 10^{-4} \times 2.67 \times 10^{10} = 9.21 \times 10^{6}$$

 $(15.9 \times 10^{-3}) / (4.47 \times 10^{-3}) = 3.557$
 $(7.24 \times 10^{-2}) \times [(2.68 \times 10^{7}) / (25.6 \times 10^{-4})] = 7.58 \times 10^{8}$
 $[(125) / (4.2 \times 10^{-6})] \times [(458 \times 10^{-9})(345) / 10.3] = 4.57 \times 10^{2}$