

Unit 07 Outcomes

For a chemical equation, develop "per expressions" from mole ratios

For
$$2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$$

"per expressions" (Conversion factors) based on coefficients of balanced equation

$$\frac{2 \text{ moles } C_2H_6}{7 \text{ moles } O_2} \qquad \frac{2 \text{ moles } C_2H_6}{6 \text{ moles } H_2O} \qquad \frac{2 \text{ moles } C_2H_6}{4 \text{ moles } CO_2}$$

$$\frac{7 \text{ moles } O_2}{2 \text{ moles } C_2H_6}$$

$$\frac{7 \text{ moles}}{4 \text{ moles CO}_2}$$

All products/reactants related by their coefficients (molar ratios)

Given a balanced chemical equation, calculate the # of moles of any component given the moles of any other species.

Moles given x <u>Coefficients wanted</u> = moles wanted Coefficients given

Where coefficients wanted and given is the ratio derived from balanced equation coefficients

Given a balanced chemical equation, calculate the # of grams of any component given the moles of any other species.

Moles given x moles wanted x moler mass wanted = grams wanted moles given 1 mole wanted

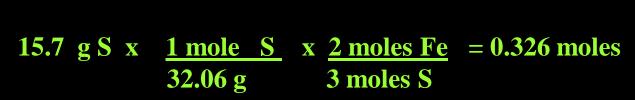
Where moles wanted and given is the ratio derived from balanced equation coefficients

How many moles of aluminum chloride are produced when 1.35 moles of aluminum oxide are reacted with hydrochloric acid

$$Al_2O_{3(s)} + 6HCl_{(aq)} \rightarrow 2AlCl_{3(aq)} + 3H_2O_{(l)}$$

1.35 moles
$$Al_2O_3$$
 x $2 \text{ moles } AlCl_3$ = 2.70 moles $AlCl_3$ 1 mole Al_2O_3

The path:



The # of moles of Fe that react with 15.7 g of S to form Iron (III) Sulfide

$$2 \text{ Fe} + 3 \text{ S} \rightarrow \text{Fe}_2 \text{S}_3$$

Given: 15.7 g S

Wanted: moles Fe

The path:

Grams $S \rightarrow Moles S \rightarrow Moles Fe$

Given a balanced chemical equation, calculate the # moles of any component given the # grams of any other species.

Grams given x 1 mole x moles wanted molar mass given moles given = moles wanted

Where moles wanted and given is the ratio derived from balanced equation coefficients

Given a balanced chemical equation, calculate the # gram of any component given the # grams of any other species.

#g given x 1 mole x moles wanted x molar mass wanted = #g wanted molar mass given moles given 1 mole

Where moles wanted and given is the ratio derived from balanced equation coefficients

How many grams of aluminum chloride are produced if 17.75 grams of aluminum are reacted with chlorine?

$$2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow 2 \text{ AlCl}_3$$

17.75 g Al x
$$1 \text{ mole Al}$$
 x 2 mole AlCl_3 x 133.3 g = 87.70 g AlCl₃ 26.98 g 2 moles Al 1 mole AlCl_3

The path:

Grams Al → Moles Al → Moles AlCl₃ → Grams AlCl₃

Define the following terms as they apply to chemical reactions: theoretical yield; actual yield; % yield

Theoretical Yield:

Amount of product formed from *complete* conversion of a given amount of reactant to product

Actual Yield:

Amount of product obtained in an experiment Typically less than theoretical

% Yield:

Actual yield expressed as a percentage of the theoretical yield

For the reaction $BaCl_{2(aq)} + Na_2SO_{4(aq)} \rightarrow BaSO_{4(s)} + 2 NaCl_{(aq)}$, the theoretical yield of barium sulfate was calculated to be 27.85 grams. If 23.45 grams of $BaSO_4$ were actually obtained, what was the percent yield?

$$23.45 g$$
 x $100 = 84.20 \%$ $27.85 g$

For the reaction of sodium chlorate decomposing to oxygen and sodium chloride, the theoretical yield of sodium chloride was calculated to be 116.8 grams. If 85.29 g of NaCl were actually obtained, what was the percent yield?

 $2 \text{ NaClO}_3 \rightarrow 2 \text{ NaCl} + 3 \text{ O}_2$ (not needed to solve the problem)

$$85.29 g \times 100 = 73.02 \%$$

116.8 g

Given the actual yield & information from which the theoretical yield can be calculated, determine the % yield.

Use Correct Formulas for Reactants & Products
Balance Equation
Set-up conversion string for theoretical yield of wanted compound
Usually involves determining molar mass
% Yield:

Actual yield expressed as a percentage of the theoretical yield

For the precipitation reaction: lead (II) nitrate plus sodium iodide yields lead (II) iodide precipitate and sodium nitrate.

$$Pb(NO_3)_{2(aq)} + 2 NaI_{(aq)} \rightarrow PbI_{2(s)} + 2 NaNO_{3(aq)}$$

If 0.925 moles of sodium iodide are reacted with excess lead(II) nitrate, what is the theoretical yield of lead (II) iodide?

0.925 moles NaI x
$$\frac{1 \text{ mole PbI}_2}{2 \text{ moles NaI}}$$
 x $\frac{460.99}{1 \text{ mole PbI}_2}$ g = 213.20 \Rightarrow 213 g PbI₂

If 197.50 grams of lead (II) iodide were actually produced, what was the percent yield?