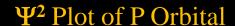
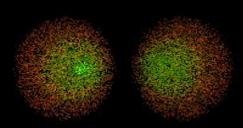


Unit 11 Outcomes

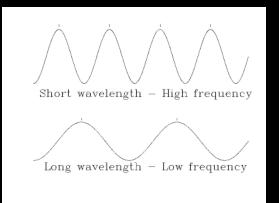

Describe the extra-nuclear structure of the atom Bohr Model

Electron is a solid particle that revolves around an orbit Orbit is defined by laws of magnetic attraction Only works for single electron (hydrogen)



Quantum Model

Electron behaves as a particle-wave (a duality) Electron position & path cannot simultaneously be determined Electron described by H Ψ = E Ψ where Ψ^2 gives probability of finding an electron in space 3-D plot of Ψ^2 gives regions of electron occupancy


Give the qualitative relationship between: wavelength and frequency

Frequency & Wavelength are inversely related:
high frequency means short wavelength
low frequency means long wavelength
wavelength and energy

Wave energy & wavelength are inversely related wavelength increases, energy decreases wavelength decreases, energy increases

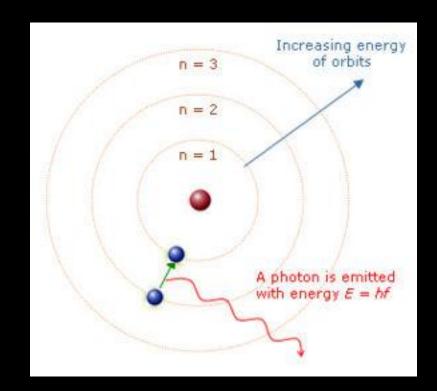
frequency and energy

Wave energy & frequency are directly related. frequency increases, energy increases energy decreases, frequency decreases

Differentiate between continuous & quantized

Continuous – white light spectrum Quantized – emission spectra

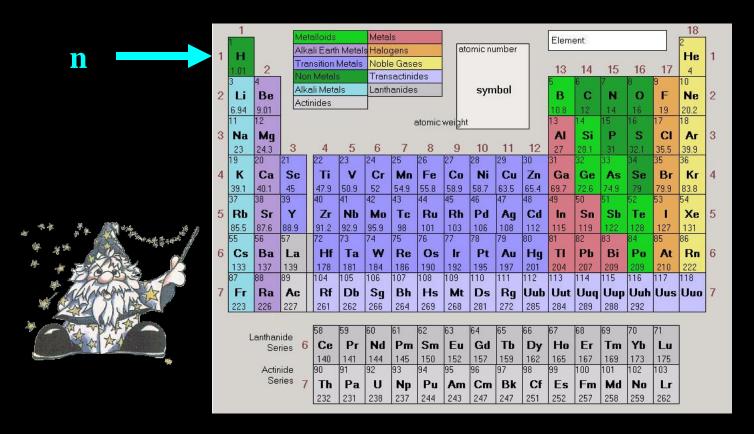
Anything with "steps" is quantized



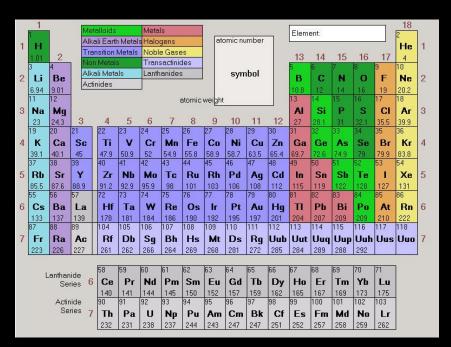
Distinguish between ground state & excited state of an atom

Ground state = lowest energy; resting state

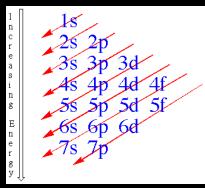
Excited State = result of absorbing energy

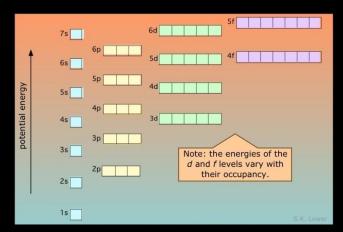

moves electron to higher energy orbital

Identify the principal energy levels in an atom Quantum number n


Corresponds to row of periodic table

State the energy trend among the principal energy levels in an atom As n increases (move down rows of periodic table), energy increases

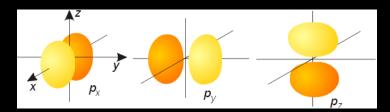

For each principal energy level, state the number of sublevels identify them.



- n Subshells (Orbitals)
- 1 s
- 2 s, 2p
- 3 s, 3p
- 4 s, 3d, 4p
- 5 s, 4d, 5p
- 6 s, 4f, 5d, 6p
- 7 s, 5f, 6d, 7p

State the relative energy trend among sublevels

Describe what is meant by orbital


3-D plots of Ψ^2 functions represent electron orbitals Region of space where an electron is likely to be found

Describe the shapes of s and p orbitals

s = spherical

p = **dumb-bell** shaped

Recognize that the Pauli exclusion principle limits the number of electrons Describe the restriction

Each sub-orbital can have a maximum of 2 electrons (orbital may have 0, 1 or 2 electrons)

Recognize chemical properties depend on electron configuration

Periodicity (Columns) a Function of Similar Outer Shell Outer shell = valence electrons

Write ground state electron configuration for elements of Z = 1 - 36

```
1s^1
    H
    He 1s^2 = [He]
3
    Li [He] 2s<sup>1</sup>
    Be [He] 2s<sup>2</sup>
   B [He] 2s^2 2p^1
6
    C [He] 2s^2 2p^2
  N [He] 2s^2 2p^3
    O [He] 2s^2 2p^4
         [He] 2s^2 2p^5
9
10 Ne [He] 2s^2 2p^6 = [Ne]
11 Na [Ne] 3s<sup>1</sup>
12 Mg [Ne] 3s<sup>2</sup>
13 Al [Ne] 3s^2 3p^1
14 Si [Ne] 3s^2 3p^2
15 P [Ne] 3s^2 3p^3
16 S [Ne] 3s^2 3p^4
17 Cl [Ne] 3s<sup>2</sup> 3p<sup>5</sup>
18 Ar [Ne] 3s^2 3p^6 = [Ar]
19 K
         [Ar] 4s^1
```


Using n for the highest occupied energy level, write valence electron configurations of any representative element

Family	Outer Shell	
Group1A	ns ¹	Octet Rule
Group 2A	ns ²	
Group 3A	ns ² np ¹	
Group 4A	ns ² np ²	
Group 5A	ns ² np ³	Atoms want:
Group 6A	ns ² np ⁴	
Group 7A		To be "noble"
Group 8A	ns^2np^6	To fill Outer shell to 8 valence electrons

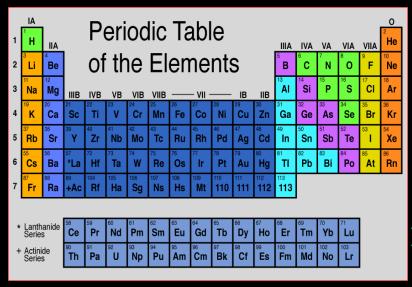
Write the Lewis (electron dot) symbol for an atom of any representative element

I	II		III	IV	V	VI	VII	0
н•								He
Li•	•Be •		•В•	C	N	0	F	Ne
Na•	•Mg•		• Al •	Si	Р	S	CI	Ar
K•	•Ca•		• Ga•	Ge	As	Se	Br	Kr
Rb•	•Sr •		• In •	Sn	Sb	Те	1.	Xe
Cs	•Ba•		• TI •	Pb	Bi	Po	At	Rn

Given symbol for a representative element, select other elements that would be expected to have similar chemical properties & conversely, elements that have different chemical properties.

Group 1A (1): alkali metals

Group 2A (2): alkaline earth metals


Group 7A (17): halogens

Group 8A (18): noble (inert) gases

Representative (1-2; 13-18): The A Groups (the Edges)

Transition Metals (3-12): The B Groups (the Center)

Metalloids: "Staircase" B,Si, Ge, As, Sb, Te, Po

Lanthanides = upper, of lower rows Actinides = lowest, of lower rows

Predicted Chemical Properties
Elements in the same column are similar
Elements in different columns are different

Identify monatomic ions that are isoelectronic with a given noble gas; write the electron configuration of those ions.

Isoelectronic

Monatomic Ions With Noble Gas Electron Configurations Isoelectronic = identical electron configuration

Atoms form ions to obtain a noble gas electron configuration

Na $1s^22s^22p^63s^1$

 Na^{+} $1s^{2}2s^{2}2p^{6}$

 $\overline{\text{Ne}} \quad \overline{1\text{s}^22\text{s}^22\text{p}^6}$

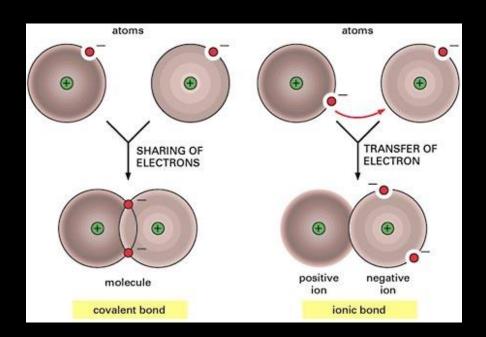
 $O \qquad 1s^2 2s^2 2p^4$

 O^{2-} 1s²2s²2p⁶

Ne $1s^22s^22p^6$

1	IA 1	l IIA		P	eri	IIIA	IVA	VA	VIA	VIIA	O 2 He							
2	3 Li	⁴ Be	of the Elements											⁶ С	7 N	80	° F	Ne
3	Na Na	Mg	IIIB	IVB	VB	VIB	VIIB	_	– VII -		IB	IIB	13 Al	Si	15 P	16 S	17 CI	Ar
4	19 K	Ca	21 Sc	²² T i	V	Cr	²⁵ Mn	Fe Fe	27 Co	Ni Ni	Cu	Zn	Ga Ga	Ge	As	Se	Br	Kr
5	37 Rb	s S	39 Y	Zr	Nb	42 Mo	₃₃ ⊢ C	4 Ru	Rh	Pd Pd	Ag	⁴⁸ Cd	⁴⁹ In	Sn Sn	55 Sb	⁵² Te	53 	⁵⁴ Хе
6	Cs Cs	⁵⁶ Ba	⁵⁷ *La	72 Hf	73 Ta	74 W	75 Re	⁷⁶ Os	ir	78 Pt	79 Au	[∞] Hg	81 TI	Pb	Bi	Po	At	Rn 86
7	Fr	⁸⁸ Ra	89 +Ac	104 Rf	105 Ha	Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					
* Lanthanide Series		Ce Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	Tb	Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	Lu			
+	Actinion Series	de S	90 Th	91 Pa	92 U	93 Np	Pu	95 Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	Md	No	103 Lr		

Distinguish between ionic and covalent bonds


Ionic:

Transfer of electrons from one atom → ions
+/- ions attracted to one another
Strong electrostatic forces hold ions within crystal matrix

Covalent:

Sharing a pair of electrons between two nuclei

Differentiate between properties of ionic and covalent (molecular) compounds.

Ionic

Covalent

Basic Component

Ions

Atoms/Molecules

Constituents

Metal + Non-Metal

2 Non-Metals

State (RT)

Solid

Solid, Liquid, Gas

Melting Point

Very High

> 200 °C

Lower

< 200 °C

Conductivity

Solids: Poor

Melted: Good

Aqueous: Good

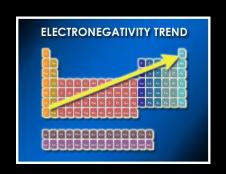
Solids: Poor

Melted: Good

Aqueous: Good

Distinguish between polar and nonpolar covalent bonds

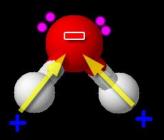
Nonpolar Covalent: equal sharing of e⁻ (Like C-H) Polar Covalent: unequal sharing of e⁻ (Like O-H)


Given the electronegativities of all elements involved, rank bonds in order of increasing or decreasing polarity

 $\Delta < 0.4 \Rightarrow$ non-polar covalent

 Δ 0.4 - 1.9 \rightarrow polar covalent

 $\Delta > 1.9 \Rightarrow ionic$

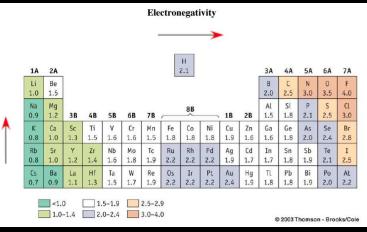

 Δ = difference in electronegativity of the bonded atoms >difference, greater the polarity of the bond

If the bond is polar, state which end is positive and which end is negative.

Most electronegative atom → negative end of dipole

Using an electronegativity table, determine the bond type for the following:

H-Cl
$$(3.0 - 2.1 = 0.9) = \text{polar covalent}$$


Ca-Cl
$$(3.0 - 1.0 = 2.0) = ionic$$

P-Cl
$$(3.0 - 2.1 = 0.9) = polar covalent$$

Se-Br
$$(2.8-2.4=0.4_= non=polar covalent$$

O-F
$$(4.0 - 3.5 = 0.5) = \text{polar covalent}$$

O-H
$$(3.5 - 2.1 = 1.4) = polar covalent$$

At which atom is the negative end of the dipole?

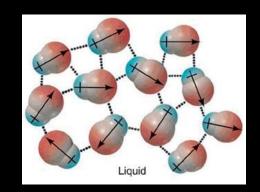
O-H (O = 3.5; H = 2.1) O
$$\rightarrow$$
 most electronegative is negative (arrow) end

Si-Cl (
$$Cl = 3.0$$
; $Si = 1.8$) Cl

Which is the most polar bond ... O-H or SH?

O-H
$$(3.5 - 2.1 = 1.4)$$
 greater electronegativity difference

S-H
$$(2.5 - 2.1 = 0.4)$$



Identify and describe or explain dipole forces, dispersion forces, & H- bonds

Dipole-Dipole Interactions:

Molecules with permanent Dipole

Dipoles align ... cohesive attraction

Hydrogen Bonds

H & electronegative atom (especially N & O; F) Very important In biological systems

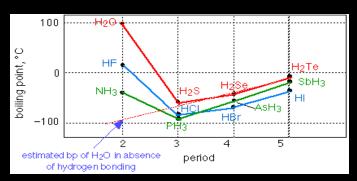
London Dispersion (Van derWaal's) Forces Weakest interaction

Temporary; when adjacent atom electrons create dipole All atoms; more prevalent in heavier/larger Stronger when atoms easily polarized

Hydrogen

Given the structure of a molecule, or information from which it may be determined, identify the significant intermolecular forces present.

Dipole-Dipole Interactions require polar bonds/atoms
Hydrogen bonds require H and electronegative atom


London Dispersion – available to all atoms

Given the molecular structure of two substances, or info from which they may be obtained, compare or predict relative values of physical properties

If only dispersion forces present (no H-bonding), the more electrons present (higher Z), > boiling point

If H-bonding (> dispersion forces) present, H bonded higher, Then, the more electrons present (higher Z), > boiling point

