Summary of Stoichiometry Lab Calculations

Determine Molar Mass of Na₂CO₃ Determine Molar Mass of NaCl

$$Na_2CO_{3 (aq)} + 2 HCl_{(aq)} \rightarrow 2 NaCl_{(aq)} + H_2O_{(l)} + CO_{2 (g)}$$

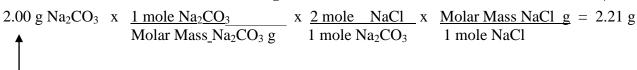
Amount 6 M HCL is needed to completely react with 2.00 g Na₂CO₃

(6 M HCL means 6 moles of HCl per liter of solution ... we will discuss this in the solutions unit)

$$2.00 \text{ g} \quad \text{Na}_2\text{CO}_3 \quad \text{x} \quad \underline{1 \text{ mole Na}_2\text{CO}_3} \quad \text{x} \quad \underline{2 \text{ mole}} \quad \underline{\text{HCl}} \quad \text{x} \quad \underline{1 \quad L} \quad \text{x} \quad \underline{1000 \text{ mL}} = 6.28 \text{ mL}$$

$$105.99 \text{ g} \quad 1 \text{ mole Na}_2\text{CO}_3 \quad 6 \text{ moles HCl} \quad 1 \text{ L}$$

So, you should not need to use more than ~ 6.5 mL of 6 M HCl in the experiment


1. Mass of sodium carbonate sample at the beginning of the experiment (Weighing by Difference):

Mass of Evaporating Dish + Watch Glass + sodium carbonate

Mass of Evaporating Dish + Watch Glass
 Mass of your sodium carbonate

 $Your\ Theoretical\ Yield \\ (Depends\ on\ your\ Na_2CO_3\ mass)$

2. Theoretical Yield of NaCl from 2.00 grams Na₂CO₃

Your weight of Na₂CO₃ at the start of experiment gives your theoretical yield of NaCl

3. Mass of NaCl remaining (Actual Yield) at the end of the experiment (Weighing by Difference):

Mass of Evaporating Dish + Watch Glass + NaCl

- Mass of Evaporating Dish + Watch Glass

Mass of your NaCl sample remaining at end of experiment

Percent Calculation

4. Experimental Percent Yield of NaCl

5. Percent Experimental Error in NaCl Isolation

% Error = Actual yield NaCl (g) — Theoretical Yield NaCl (g) x 100

Theoretical Yield NaCl (g)

Since Actual Yield is typically < Theoretical Yield % Error should be a small, negative number